Skip to main content

Advertisement

Log in

Sol–gel catalysts for synthetic organic chemistry: milestones in 30 years of successful innovation

  • Review Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

First commercialized in the second half of the 1990s as organosilica-entrapped lipases, sol–gel catalysts share several unique properties that make them ideally suited for process chemistry, namely synthetic organic chemistry in the fine chemicals industry. Is their application potential fully realized? What are the obstacles to their widespread uptake in the specialty and fine chemicals industry? Can they also be employed in visible-light photocatalysis?

Highlights

  • Sol–gel catalysts share several unique properties that make them ideally suited for process chemistry.

  • With their high activity and ultralow leaching, these catalysts can often displace homogeneous catalysts as drop-in replacements, requiring little or no changes to existing processes.

  • Production costs lower, thanks to streamlined chemical processes requiring no expensive catalyst–product separation.

  • Sol–gel catalysts are increasingly used by industry but their application potential is far from being fully realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Braun S, Shtelzer S, Rappoport S, Avnir D, Ottolenghi M (1992) Biocatalysis by sol-gel entrapped enzymes. J Non-Cryst Solids 147–148:739–743

    Google Scholar 

  2. López T, Bosch P, Asomoza M, Gomez R (1992) Ru/SiO2-impregnated and sol-gel-prepared catalysts: synthesis, characterization, and catalytic properties. J Catal 133:247–259

    Google Scholar 

  3. Avnir D (1995) Organic chemistry within ceramic matrixes: doped sol-gel materials. Acc Chem Res 28:328–334

    CAS  Google Scholar 

  4. Rosenfeld A, Avnir D, Blum J (1993) Sol-gel encapsulated transition metal quaternary ammonium ion pairs as highly efficient recyclable catalysts. J Chem Soc Chem Commun 583–584. https://pubs.rsc.org/en/content/articlelanding/1993/c3/c39930000583#!divAbstract

  5. Cauqui MA, Rodríguez-Izquierdo JM (1992) Application of the sol-gel methods to catalyst preparation. J Non-Cryst Solids 147/148:724–738

    Google Scholar 

  6. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992

    CAS  Google Scholar 

  7. Kröcher O, Köppel RA, Baiker A (1996) Sol–gel derived hybrid materials as heterogeneous catalysts for the synthesis of N,N-dimethylformamide from supercritical carbon dioxide. Chem Commun 1497–1498. https://pubs.rsc.org/en/content/articlelanding/1996/cc/cc9960001497#!divAbstract

  8. Reetz MT, Zonta A, Simpelkamp J (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol–gel materials. Angew Chem Int Ed Engl 34:301–303

  9. Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534

    CAS  Google Scholar 

  10. Reetz MT, Tielmann P, Wiesenhöfer W, Könen W, Zonta A (2003) Second generation sol-gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    CAS  Google Scholar 

  11. Ciriminna R, Demma Carà P, Sciortino M, Pagliaro M (2011) Catalysis with doped sol-gel silicates. Adv Synth Catal 353:677–687

    CAS  Google Scholar 

  12. Avnir D, Blum J, Nairoukh Z (2015) Better catalysis with organically modified sol-gel materials. In: Levy D, Zayat M (eds) The sol-gel handbook, vol 2, Wiley-VCH, Weinheim, Germany, pp 963–985

  13. Esposito S (2019) “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 12:668

    CAS  Google Scholar 

  14. Ozin G (1992) Nanochemistry: synthesis in diminishing dimensions. Adv Mater 4:612–649

    CAS  Google Scholar 

  15. Pagliaro M (2015) Advancing nanochemistry education. Chem Eur J 21:11931–11936

    CAS  Google Scholar 

  16. Pagliaro M (2019) Chemistry education fostering creativity in the digital era. Isr J Chem 59:565–571

    CAS  Google Scholar 

  17. Hübner S, de Vries JG, Farina V (2016) Why does industry not use immobilized transition metal complexes as catalysts? Adv Synth Catal 358:3–25

    Google Scholar 

  18. Cole-Hamilton DJ (2003) Homogeneous catalysis–new approaches to catalyst separation, recovery, and recycling. Science 299:1702–1706

    CAS  Google Scholar 

  19. Ciriminna R, Blum J, Avnir D, Pagliaro M (2000) Sol-gel entrapped TEMPO for the selective oxidation of methyl alfa-D-glucopyranoside. Chem Commun 1441–1442. https://pubs.rsc.org/en/content/articlelanding/2000/cc/b003096l#!divAbstract

  20. Ciriminna R, Bolm C, Fey T, Pagliaro M (2002) Sol-gel ormosils doped with TEMPO as recyclable catalysts for the selective oxidation of alcohols. Adv Synth Catal 344:159–163

    CAS  Google Scholar 

  21. Michaud A, Gingras G, Morin M, Béland F, Ciriminna R, Avnir D, Pagliaro M (2007) SiliaCat TEMPO: an effective and useful oxidizing catalyst. Org Process Res Dev 11:766–768

    CAS  Google Scholar 

  22. Pandarus V, Ciriminna R, Gingras G, Béland F, Drobod M, Jima O, Pagliaro M (2013) Greening heterogeneous catalysis for fine chemicals. Tetrahedron Lett 54:1129–1132

    CAS  Google Scholar 

  23. Pagliaro M, Bolm C, Ciriminna R (2002) Sol-gel ormosils doped with TEMPO as recyclable catalysts for the selective oxidation of alcohols. Adv Synth Catal 344:159–163

    Google Scholar 

  24. Fidalgo A, Ciriminna R, Ilharco LM, Pagliaro M (2005) Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol-gel catalysts. Chem Mater 17:6686–6694

    CAS  Google Scholar 

  25. Hughes N (2017) Development of sustainable catalytic systems for oxidation reactions. Ph.D. Thesis, Queen’s University Belfast. https://pure.qub.ac.uk/portal/en/theses/development-of-sustainable-catalytic-systems-for-oxidation-reactions(acf2d91f-e0ae-414d-b6ef-23da3c56e750).html

  26. Jun SH, Park SG, Kang NG (2019) One-pot method of synthesizing TEMPO-oxidized bacterial cellulose nanofibers using immobilized TEMPO for skincare applications. Polymers 11:1044

    CAS  Google Scholar 

  27. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecul 7:1687–1691

    CAS  Google Scholar 

  28. Pagliaro M (2018) Cellulose nanofiber: an advanced biomaterial soon to become ubiquitous. Chim Oggi 36(4):61–62

    Google Scholar 

  29. Jetten J, Besemer A (2003) Process for the recovery of nitroxy compounds from organic solutions and oxidation process. US20050154206A1

  30. Patankar C, Renneckar S (2017) Greener synthesis of nanofibrillated cellulose using magnetically separable TEMPO nanocatalyst. Green Chem 19:4792–4797

    CAS  Google Scholar 

  31. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    CAS  Google Scholar 

  32. Ferrer ML, del Monte F, Levy D (2002) A novel and simple alcohol-free sol−gel route for encapsulation of labile proteins. Chem Mater 14:3619–3621

    CAS  Google Scholar 

  33. Pagliaro M, Pandarus V, Béland F, Ciriminna R, Palmisano G, Demma Carà P (2011) A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catal Sci Technol 1:736–739

    Google Scholar 

  34. Pandarus V, Ciriminna R, Béland F, Pagliaro M (2011) A new class of heterogeneous Pt catalysts for the chemoselective hydrogenation of nitroarenes. Adv Synth Catal 353:1306–1316

    CAS  Google Scholar 

  35. Ciriminna R, Ilharco LM, Pandarus V, Fidalgo A, Béland F, Pagliaro M (2014) Towards waste free organic synthesis via nanostructured hybrid silicas. Nanoscale 6:6293–6300

    CAS  Google Scholar 

  36. Fidalgo A, Ciriminna R, Lopes L, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) The sol-gel entrapment of noble metals in hybrid silicas: a molecular insight. Chem Centr J 7:161

    Google Scholar 

  37. Ciriminna R, Pandarus V, Béland F, Pagliaro M (2016) Fine chemical synthesis under flow using the siliacat catalysts. Catal Sci Technol 6:4678–4685

    CAS  Google Scholar 

  38. Ciriminna R, Pandarus V, Fidalgo A, Ilharco LM, Béland F, Pagliaro M (2015) SiliaCat: a versatile catalyst series for synthetic organic chemistry. Org Process Res Dev 19:755–768

    CAS  Google Scholar 

  39. Ciriminna R, Della Pina C, Falletta E, Teles JH, Pagliaro M (2016) Industrial applications of gold catalysis. Angew Chem Int Ed 55:14210–14217

    CAS  Google Scholar 

  40. Ramirez Côté C, Ciriminna R, Pandarus V, Béland F, Pagliaro M (2018) Comparing the pyrophoricity of palladium catalysts for heterogeneous hydrogenation. Org Process Res Dev 22:1852–1855

    Google Scholar 

  41. Ciriminna R, Pandarus V, Béland F, Pagliaro M (2014) Catalytic hydrogenation of squalene to squalane. Org Process Res Dev 18:1110–1115

    CAS  Google Scholar 

  42. Pandarus V, Ciriminna R, Kaliaguine S, Béland F, Pagliaro M (2015) Heterogeneously catalyzed hydrogenation of squalene to squalane under mild conditions. ChemCatChem 7:2071–2076

    CAS  Google Scholar 

  43. Pandarus V, Ciriminna R, Kaliaguine S, Béland F, Pagliaro M (2017) Solvent-free chemoselective hydrogenation of squalene to squalane. ACS Omega 2:3989–3996

    CAS  Google Scholar 

  44. Pagliaro M, Sciortino M, Ciriminna R, Alonzo G, De Schrijver A (2011) From molecules to systems: sol-gel microencapsulation in silica-based materials. Chem Rev 111:765–789

    Google Scholar 

  45. Pandarus V, Ciriminna R, Gingras G, Béland F, Pagliaro M, Kaliaguine S (2019) Waste-free and efficient hydrosilylation of olefins. Green Chem 21:129–140

    CAS  Google Scholar 

  46. Ghahremani M, Ciriminna R, Pandarus V, Scurria A, La Parola V, Giordano F, Avellone G, Béland F, Karimi B, Pagliaro M (2018) Green and direct synthesis of benzaldehyde and benzyl benzoate in one pot. ACS Sust Chem Eng 6:15441–15446

    CAS  Google Scholar 

  47. Lemay M, Pandarus V, Simard M, Marion O, Tremblay L, Béland F (2010) SiliaCat S-Pd and SiliaCat DPP-Pd: highly reactive and reusable heterogeneous silica-based palladium catalysts. Top Catal 53:1059–1062

    CAS  Google Scholar 

  48. de Juan M. Muñoz, Alcázar J, de la Hoz A, Díaz-Ortiz A(2012) Cross‐coupling in flow using supported catalysts: mild, clean, efficient and sustainable Suzuki–Miyaura coupling in a single pass Adv Synth Catal 354:3456–3460

    Google Scholar 

  49. Egle B, de Muñoz JM, Alonso N, De Borggraeve WM, de la Hoz A, Díaz-Ortiz A, Alcázar J (2014) First example of alkyl–aryl Negishi cross-coupling in flow: mild, efficient and clean introduction of functionalized alkyl groups. J Flow Chem 4:22–25

    Google Scholar 

  50. Greco R, Goessler W, Cantillo D, Kappe CO (2015) Benchmarking immobilized di- and triarylphosphine palladium catalysts for continuous-flow cross-coupling reactions: efficiency, durability, and metal leaching studies. ACS Catal 5:1303–1312

    CAS  Google Scholar 

  51. McAfee SM, Welch GC (2019) Development of organic dye‐based molecular materials for use in fullerene‐free organic solar cells. Chem Rec 19:989–1007

    CAS  Google Scholar 

  52. Alltucker K (2019) Blood pressure drug recall: FDA investigates foreign plants that made drugs with cancer-causing impurities, USA Today, 17 December 2019. https://eu.usatoday.com/story/news/health/2019/01/14/fda-zhejiang-huahai-hetero-labs-blood-pressure-drug-recall-cancer/2547858002/

  53. Pandarus V, Desplantier-Giscard D, Gingras G, Ciriminna R, Béland F, Pagliaro M (2013) Greening the valsartan synthesis: scale-up of key Suzuki-Miyaura coupling over SiliaCat DPP-Pd. Org Process Res Dev 17:1492–1497

    CAS  Google Scholar 

  54. Martin AD, Siamaki AR, Belecki K, Gupton F (2015) A flow-based synthesis of telmisartan. J Flow Chem 5:145–147

    CAS  Google Scholar 

  55. Ciriminna R, Hesemann P, Moreau J, Carraro M, Campestrini S, Pagliaro M (2006) Aerobic oxidation of alcohols in carbon dioxide with silica-supported ionic liquids doped with perruthenate. Chem Eur J 12:5220–5224

    CAS  Google Scholar 

  56. Ciriminna R, Campestrini S, Pagliaro M (2006) FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in dense phase carbon dioxide. Org Biomol Chem 4:2637–2641

    CAS  Google Scholar 

  57. Thomas S (2018) Leaders in performance and speciality chemicals. Chemspec Europe. www.chemspeceurope.com/2019/assets/CSE18_RSCArchive_2016_14.pdf

  58. Ciriminna R, Pagliaro M (2013) Green chemistry in the fine chemicals and pharmaceutical industries. Org Process Res Dev 17:1479–1484

    CAS  Google Scholar 

  59. Pagliaro M (2019) An industry in transition: the chemical industry and the megatrends driving its forthcoming transformation. Angew Chem Int Ed 58:11154–11159

    CAS  Google Scholar 

  60. Ciriminna R, Pagliaro M, Luque R (2019) Heterogeneous catalysis under flow for the 21st century fine chemical industry, Preprints 2019010175. https://doi.org/10.20944/preprints201901.0175.v1

  61. Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson PI, Roschangar F, Steven A, Weiberth FJ (2018) Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem 20:5082–5103

    CAS  Google Scholar 

  62. Jensen KF (2017) Flow chemistry-microreaction technology comes of age. AIChE J 63:858–869

    CAS  Google Scholar 

  63. Porcu L (2019) A flow chemistry approach for the supply risk management: optimization of industrial processes. Making Pharmaceuticals, Milano

    Google Scholar 

  64. Zhang Y, Ciriminna R, Palmisano G, Xu YJ, Pagliaro M (2014) Sol-gel entrapped visible light photocatalysts for selective conversions. RSC Adv 4:18341–18346

    CAS  Google Scholar 

  65. Ciriminna R, Delisi R, Parrino F, Palmisano L, Pagliaro M (2017) Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light. Chem Commun 53:7521–7524

    CAS  Google Scholar 

  66. Ciriminna R, Delisi R, Xu YJ, Pagliaro M (2016) Towards the waste-free synthesis of fine chemicals with visible light. Org Process Res Dev 20:403–408

    CAS  Google Scholar 

  67. Smith JD, Jamhawi AM, Jasinski JB, Gallou F, Ge J, Advincula R, Liu J, Handa S (2019) Organopolymer with dual chromophores and fast charge-transfer properties for sustainable photocatalysis. Nat Commun 10:1837

    Google Scholar 

  68. Karimi B, Ghahremani M, Ciriminna R, Pagliaro M (2018) New stable catalytic electrodes functionalized with TEMPO for the waste-free oxidation of alcohols. Org Process Res Dev 22:1298–1305

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Rosaria Ciriminna, CNR, Valerica Pandarus and François Béland, SiliCycle, Laura M. Ilharcoa and Alexandra Fidalgo, Instituto Superior Técnico, David Avnir, Hebrew University of Jerusalem, Sandro Campestrini, University of Padova, Serge Kaliaguine, Université Laval, Massimo Carraro, now at the University of Sassari, Govanni Palmisano, now at Khalifa University of Science and Technology, Francesco Parrino, now at University of Trento, Babak Karimi and Mina Ghahremani, Institute of Advanced and Basic Studies, Yi-Jun Xu, Fuzhou University, and Leonardo Palmisano, University of Palermo. Well beyond scientific collaboration I am privileged to enjoy the friendship of these eminent scholars over several years. Thanks to the organizers of the 20th International Sol-Gel Conference, St. Petersburg, August 25–30, 2019, for inviting me to give a plenary lecture on the topics of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pagliaro.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliaro, M. Sol–gel catalysts for synthetic organic chemistry: milestones in 30 years of successful innovation. J Sol-Gel Sci Technol 95, 551–561 (2020). https://doi.org/10.1007/s10971-020-05266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05266-3

Keywords

Navigation