Facile hydrothermal synthesis of CuCo2O4/AC/PANI nanocomposites

Abstract

CuCo2O4 nanorods and their nanocomposites were prepared via facile hydrothermal synthesis with the help of urea. X-ray diffraction results revealed the face-centered cubic (Fd3m) structure and the obtained product average crystallite size was about 17.45 nm. The vibrational state of 1Eg and 1A1g Raman active modes of CuCo2O4 materials was observed at 480 and 609 cm−1. Scanning electron microscopy analysis revealed that the length of each CuCo2O4 nanorods is in the range of 30–40 µm with smooth surface. The role and the synergic effect of the prepared nanocomposite component were well-determined in electrochemical studies. The prepared CuCo2O4/AC/PANI nanocomposite specific capacitance was found to be 576.6 F g−1 at 0.5 A g−1 current density. When compared with CuCo2O4 nanorods (PM1) at 0.5 A g−1 current density, CuCo2O4/AC/PANI showed double increment in the specific capacitance. It is noteworthy that CuCo2O4/AC/PANI nanocomposite shows good specific capacitance of 198.1 F g−1 with high current density of 0.5 A g−1.

Highlights

  • CuCo2O4/AC/PANI nanocomposite specific capacitance was found to be 576.6 F g−1 at 0.5 A g−1 current density.

  • CuCo2O4/AC/PANI showed double increment in the specific capacitance.

  • CuCo2O4/AC/PANI nanocomposite shows good specific capacitance of 198.1 F g−1 with a high current density of 0.5 A g−1.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Chen YR, Chiu KF, Lin HC, Chen CL, Hsieh CY, Tsai CB, Chu BTT (2014) Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder. Solid State Sci 37:80–85

    Article  CAS  Google Scholar 

  2. 2.

    Su H, Wang T, Zhang S, Song J, Mao C, Niu H, Jin B, Wu J, Tian Y (2012) Facile synthesis of polyaniline/TiO2/graphene oxide composite for high performance supercapacitors. Solid State Sci 14:677–681

    Article  CAS  Google Scholar 

  3. 3.

    Dai X, Shi W, Cai H, Li R, Yang G (2014) Facile preparation of the novel structured α-MnO2/graphene nanocomposites and their electrochemical properties. Solid State Sci 27:17–23

    Article  CAS  Google Scholar 

  4. 4.

    Nguyen TT, Nguyen VH, Deivasigamani RK, Kharismadewi D, Iwai Y, Shim JJ (2016) Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci 53:71–77

    Article  CAS  Google Scholar 

  5. 5.

    Wang K, Xu J, Lu A, Shi Y, Lin Z (2016) Coordination polymer template synthesis of hierarchical MnCo2O4.5 and MnNi6O8 nanoparticles for electrochemical capacitors electrode. Solid State Sci 58:70–79

    Article  CAS  Google Scholar 

  6. 6.

    Zheng Z, Huang L, Zhou Y, Hu X, Ni X (2009) Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance. Solid State Sci 11:1439–1443

    Article  CAS  Google Scholar 

  7. 7.

    Yang W, Gao Z, Wang J, Wang B, Liu L (2013) Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors. Solid State Sci 20:46–53

    Article  CAS  Google Scholar 

  8. 8.

    Liu H, Lu B, Wei S, Bao M, Wen Y, Wang F (2012) Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors. Solid State Sci 14:789–793

    Article  CAS  Google Scholar 

  9. 9.

    Senthilkumar B, Kalai Selvan R, Vasylechko L, Minakshi M (2014) Synthesis, crystal structure and pseudocapacitor electrode properties of γ-Bi2MoO6 nanoplates. Solid State Sci 35:18–27

    Article  CAS  Google Scholar 

  10. 10.

    Pendashteh A, Moosavifard SE, Rahmanifar MS, Wang Y, El-Kady MF, Kaner RB, Mousavi MF (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors.Chem Mater 27:3919–3926

    Article  CAS  Google Scholar 

  11. 11.

    Vijayakumar S, Lee SH, Ryu KS (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  12. 12.

    Cheng J, Yan H, Lu Y, Qiu K, Hou X, Xu J, Han L, Liu X, Kim JK, Luo Y (2015) Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J Mater Chem A 3:9769–9776

  13. 13.

    Gu S, Lou Z, Ma X, Shen G (2015) CuCo2O4 nanowires grown on a Ni wire for high-performance, flexible fiber supercapacitors. Chem Electro Chem 2:1042–1047

    CAS  Google Scholar 

  14. 14.

    Silambarasan M, Padmanathan N, Ramesh PS, Geetha D (2016) Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties. Mater Res Express 3:95021–95028

    Article  CAS  Google Scholar 

  15. 15.

    Jadhav HS, Pawar SM, Jadhav AH, Thorat GM, Seo JG (2016) Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep. 6:31120–31131

    Article  CAS  Google Scholar 

  16. 16.

    Kaverlavani SK, Moosavifard SE, Bakouei A (2017) Self-templated synthesis of uniform nanoporous CuCo2O4 double-shelled hollow microspheres for high-performance asymmetric supercapacitors. Chem Commun 53:1052–1055

    Article  CAS  Google Scholar 

  17. 17.

    Pendashteh A, Rahmanifar MS, Kaner RB, Mousavi MF (2014) Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem Commun 50:1972–1975

    Article  CAS  Google Scholar 

  18. 18.

    Wang Q, Chen D, Zhang D (2015) Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors. RSC Adv 5:96448–96454

    Article  CAS  Google Scholar 

  19. 19.

    Wang Q, Xu J, Wang X, Liu B, Hou X, Yu G, Wang P, Chen D, Shen G (2014) Core–shell CuCo2O4@MnO2nanowires on carbon fabrics as high-performance materials for flexible, all-solid-state, electrochemical capacitors. Chem Electro Chem 1:559–564

    Google Scholar 

  20. 20.

    Tian ZY, Vieker H, Kouotou PM, Beyer A (2015) In situ characterization of Cu–Co oxides for catalytic application. Faraday Discuss 177:249–262

    Article  CAS  Google Scholar 

  21. 21.

    Ning R, Tian J, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2013) Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction. Langmuir 29:13146–13151

    Article  CAS  Google Scholar 

  22. 22.

    Saravanakumar B, Jansi Rani B, Ravi G, Thambidurai M, Yuvakkumar R (2017) Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods. J Magn Magn Mater 428:78–85

    Article  CAS  Google Scholar 

  23. 23.

    Ramachandran SP, Saravanakumar B, Ganesh V, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine, PEG-400 effect on α-MoO3 nanoparticle synthesis for pseudo capacitance applications. J Mater Sci 28:13780–13786

    CAS  Google Scholar 

  24. 24.

    Priyadharshini T, Saravanakumar B, Ravi G, Sakunthala A, Yuvakkumar R (2017) Hexamine role on pseudocapacitive behaviour of cobalt oxide (Co3O4) nanopowders. J Nanosci Nanotechnol 17:1–7

    Article  CAS  Google Scholar 

  25. 25.

    Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Electrochemical properties of rice-like copper manganese oxide (CuMn2O4) nanoparticles for pseudocapacitor applications. J Alloy Compd 723:115–122

  26. 26.

    Saravanakumar B, Jansi Rani B, Ravi G, Sakunthala A, Yuvakkumar R (2017) Influence of reducing agent concentration on the structure, morphology and ferromagnetic properties of hematite (α-Fe2O3) nanoparticles. J Mater Sci 28:8093–8100

    CAS  Google Scholar 

  27. 27.

    Saravanakumar B, Priyadharshini T, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) Hydrothermal synthesis of spherical NiCo2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J Sol-Gel Sci Technol 84(2):297–305

  28. 28.

    Anandha Babu G, Ravi G, Hayakawa Y (2015) Microwave synthesis and effect of CTAB on ferromagnetic properties of NiO, Co3O4 and NiCo2O4 nanostructures. Appl Phys A 119:219–232

    Article  CAS  Google Scholar 

  29. 29.

    Liu S, Oscar Hui KS, Hui KN (2016) Flower-like copper cobaltite nanosheets on graphite paper as highperformance supercapacitor electrodes and enzymeless glucose sensors. ACS Appl Mater Interfaces 8:3258–3267

    Article  CAS  Google Scholar 

  30. 30.

    Prasad R, Sony, Singh P (2013) Low temperature complete combustion of a lean mixture of LPG emissions over cobaltite catalysts. Catal Sci Technol 3:3223–3233

    Article  CAS  Google Scholar 

  31. 31.

    Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572

    Article  CAS  Google Scholar 

  32. 32.

    Wong EM, Bonevich JE, Searson PC (1998) Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions. J Phys Chem B 102:7770–7775

    Article  CAS  Google Scholar 

  33. 33.

    Hu Z, Oskam G, Searson PC (2003) Influence of solvent on the growth of ZnO nanoparticles. J Colloid Interface Sci 263:454–460

    Article  CAS  Google Scholar 

  34. 34.

    Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196

    Article  CAS  Google Scholar 

  35. 35.

    Cui J, Zhang X, Tong L, Luo J, Wang Y, Zhang Y, Xie K, Wu Y (2015) A facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors. J Mater Chem A 3:10425–10431

    Article  CAS  Google Scholar 

  36. 36.

    Lu X-F, Wu D-J, Li R-Z, Li Q, Ye S-H, Tong Y–X, Li G-R (2014) Hierarchical NiCo2O4 nanosheets@hollow micro rod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2:4706–4713

    Article  CAS  Google Scholar 

  37. 37.

    Cheng B, Samulski ET (2004) Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem Commun 8:986–987

    Article  CAS  Google Scholar 

  38. 38.

    Zhang Y, Xu J, Zheng Y, Zhang Y, Hu X, Xu T (2017) Construction of CuCo2O4@CuCo2O4 hierarchical nanowire arrays grown on Ni foam for highperformance supercapacitors. RSC Adv 7:3983–3991

    Article  CAS  Google Scholar 

  39. 39.

    Xu J, Gai SL, He F, Niu N, Gao P, Chen YJ, Yang PP (2014) A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. J Mater Chem A 2:1022–1031

    Article  CAS  Google Scholar 

  40. 40.

    Wang GL, Huang JC, Chen SL, Gao YY, Cao DX (2011) Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J Power Sources 196:5756–5760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MHRD RUSA Phase 2.0 Grant No. 24-51/2014-U, Policy (TNMulti-Gen), Department of Education, Government of India, 09.10.2018 and DST FIST and UGC-SAP DRS III grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Yuvakkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, B., Ravi, G., Guduru, R.K. et al. Facile hydrothermal synthesis of CuCo2O4/AC/PANI nanocomposites. J Sol-Gel Sci Technol 94, 241–250 (2020). https://doi.org/10.1007/s10971-020-05229-8

Download citation

Keywords

  • Solvothermal
  • Urea
  • CuCo2O4 nanorods
  • Activated carbon
  • PANI