A review on polyphosphate coacervates—structural properties and bioapplications

Abstract

The coacervation process of Graham’s Salt Na(PO3)n enabled the preparation of polyphosphate coacervates (CPPs) by adding different metallic ions (Mn+), and/or low-molecular-weight solvents at a specific solution, which resulted in a phase separation. The more viscous phase is termed as CPP and the less viscous one is the supernatant. CPPs have been extensively studied in recent years as a glass precursor at room temperature. Preparation at room temperature allows the preservation of the physicochemical properties of a wide range of active principles that may be used in controlled drug-delivery systems. Despite the present limitations of CPPs in terms of high hygroscopicity, this vulnerability to water is considered one of the great advantages of this material regarding applications in the controlled release of drugs and tissue engineering. Thus, in the presence of water, CPPs will dissolve in calcium and phosphate ions, which are the major inorganic constituents of bone and hydroxyapatite (HAP). It is believed that, in contact with body fluids, CPPs will degrade and, as this process occurs, they will be replaced by HAP. Therefore, CPPs configure a potential biomaterial that offers excellent properties with a wide range of biomedical applications that will be discussed and reviewed in this paper, including the structural properties and the recent improvements of materials based on CPPs and related devices.

Highlights

  • The Polyphosphates Coacervates (CPPs) can be used as soft Glass-Materials precursors.

  • The coacervation process of polyphosphate solution enables the preparation of CPPs.

  • CPPs are biocompatible and allow the development of biomedical and pharmaceutical materials.

  • CPPs can be applied in drug delivery systems and radiopaque resorbable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    De Jager H, Prinsloo LC (2001) Thermochim Acta 376:187–196

    Article  Google Scholar 

  2. 2.

    Bhargava HN, Srivastava DC, Varma BK (1974) Colloid Polym Sci 252:20–25

    CAS  Article  Google Scholar 

  3. 3.

    Wazer JRV (1950) J Am Chem Soc 72:644–647

    Article  Google Scholar 

  4. 4.

    Rashchi F, Finch JA (2000) Miner Eng 13:1019–1035

    CAS  Article  Google Scholar 

  5. 5.

    Corbridge DEC (1995) Elsevier 5th edn 1220

  6. 6.

    Casas JM, García MP, Sanz M, Cacho F, Pérez (2010) J Ceram Int 36:39–46

    CAS  Article  Google Scholar 

  7. 7.

    Willot G, Gomez F, Vast P, Andries V, Martines M, Messaddeq Y, Poulain M (2002) C R Chim 5:899–906

    CAS  Article  Google Scholar 

  8. 8.

    Franco DF, Barud HS, Santagneli S, Lamarca RS, Fonseca-Santos B, Silva MAP, De Oliveira LFC, Ribeiro SJL, Nalin M (2016) Mater Chem Phys 180:114–121

    CAS  Article  Google Scholar 

  9. 9.

    Larson TE (1957) J Am Water Works Assoc 49:1581–1586

    CAS  Article  Google Scholar 

  10. 10.

    Dijken AV, Vanmaekelbergh D, Meijerink A (1997) Chem Phys Lett 269:494–499

    Article  Google Scholar 

  11. 11.

    Hengleinv A, Linnert T, Mulvaney P (1990) Ber Bunsenges Phys Chern 94:1449–1457

    Article  Google Scholar 

  12. 12.

    Henglein A (1989) Chem Phys Lett 154:473–476

    CAS  Article  Google Scholar 

  13. 13.

    Osorio VKL, Oliveira W (2001) Quim Nova 24:700–708

    Article  Google Scholar 

  14. 14.

    Smith ML, Bowers JA (1972) Poult Sci 51:998–1003

    Article  Google Scholar 

  15. 15.

    Huffman DL, Ande CF, Cordray JC, Stanley MH, Egbert WR (1987) J Food Sci 52:275–278

    CAS  Article  Google Scholar 

  16. 16.

    Kopp W, Barud HS, Paz MF, Bueno LA, Giordano RLC, Ribeiro SJL (2012) J Sol-Gel Sci Technol 63:219–223

    CAS  Article  Google Scholar 

  17. 17.

    De Oliveira LFC, Silva MAP, Brandão AR, Stephani R, De Oliveira CIR, Gonçalves RR, Barbosa AJ, Barud HS, Messaddeq Y, Ribeiro SJL (2009) J Sol-Gel Sci Technol 50:158–163

    CAS  Article  Google Scholar 

  18. 18.

    Silva MAP, Franco DF, De Oliveira LFC (2008) J Phys Chem A 112:5385–5389

    CAS  Article  Google Scholar 

  19. 19.

    Masson NC, Souza EF, Galembeck F (1997) Colloids Surf A Physicochem Eng 121:247–255

    CAS  Article  Google Scholar 

  20. 20.

    Dias Filho FA, Carlos LD, Messaddeq Y, Ribeiro SJL (2005) Langmuir 21:1776–1783

    CAS  Article  Google Scholar 

  21. 21.

    Lima ECO, Galembeck F (1994) J Colloid Interface Sci 166:309–315

    CAS  Article  Google Scholar 

  22. 22.

    Umegaki T, Nakayama Y, Kanazawa T (1976) Bull Chem Soc Jpn 49:2105–2107

    CAS  Article  Google Scholar 

  23. 23.

    Umegaki T, Kanazawa T (1979) Bull Chem Soc Jpn 52:2124–2126

    CAS  Article  Google Scholar 

  24. 24.

    Montanari B, Vast P, Martines MAU, Ribeiro SJL, Messaddeq Y (2002) Eclet Quím 27:305–314

    Article  Google Scholar 

  25. 25.

    Momeni A, Valliant EM, Brennan-Pierce EP, Shankar JS, Abraham R, Colp P, Filiaggi MJ (2016) Acta Biomater 32:286–297

    CAS  Article  Google Scholar 

  26. 26.

    De Jong HGB, Kruyt HR (1930) Koll Z 50:39

    Article  Google Scholar 

  27. 27.

    De Jong HGB (1949) Colloid Sci 2:232–258

  28. 28.

    Menger FM, Sykes BM (1998) Langmuir 14:4131–4137

    CAS  Article  Google Scholar 

  29. 29.

    Silva MAP, Franco DF, Brandão AR, Barud HS, Filho FAD, Ribeiro SJL, Messaddeq Y, De Oliveira LFC (2010) Mater Chem Phys 124:547–551

    CAS  Article  Google Scholar 

  30. 30.

    Franco DF, Manzani D, Barud HS, Antonio SG, De Oliveira LFC, Silva MAP, Ribeiro SJL, Nalin M (2016) RSC Adv 6:91150–91156

    CAS  Article  Google Scholar 

  31. 31.

    Gomez F, Vast P (2000) Phosphorus Res Bull 11:61–68

    CAS  Article  Google Scholar 

  32. 32.

    Palavit G, Montagne L, Delaval R (1995) J Non-Cryst Solids 189:277–282

    CAS  Article  Google Scholar 

  33. 33.

    Dias Filho FA, Ribeiro SJL, Gonçalves RR, Messaddeq Y, Carlos LD, De Zea Bermudez V, Rocha J (2004) J Alloy Compd 374:74–79

    CAS  Article  Google Scholar 

  34. 34.

    Wang K, Chen F, Liu C, Rüssel C (2008) Mater Sci Eng C 28:1572–1578

    CAS  Article  Google Scholar 

  35. 35.

    Ding YL, Chen YW, Qin YJ, Shi GQ, Yu XX, Wan CX (2008) J Mater Sci Mater Med 19:1291–1295

    CAS  Article  Google Scholar 

  36. 36.

    De Oliveira CIR, De Oliveira LFC, Dias Filho FA (2005) Spectrochim Acta Part A 61:2023–2028

    Article  CAS  Google Scholar 

  37. 37.

    Dion A, Hall G, Filiaggi MJ (2005) Biomaterials 26:4486–4494

    CAS  Article  Google Scholar 

  38. 38.

    Pikup DM, Newport RJ, Barney ER, Kim J, Valappil SP, Knowles JC (2014) J Biomater Appl 28:1226–1234

    Article  CAS  Google Scholar 

  39. 39.

    Ma QY, Traina SJ, Logan TJ, Ryan JA (1994) Sci Technol 28:1219–1228

    CAS  Article  Google Scholar 

  40. 40.

    Noam E, Noah M (2017) Materials 10(334):1–104

    Google Scholar 

  41. 41.

    Habraken W, Habibovic P, Epple M (2016) Mater Today 19(2):69–87

    CAS  Article  Google Scholar 

  42. 42.

    Canillas M, Pena P, De Aza AH, Rodríguez MA (2017) Bol Soc Esp Cerám Vidr 56:91–112

    Article  Google Scholar 

  43. 43.

    Momeni A, Filiaggi MJ (2016) J Rheol 60:25–34

    CAS  Article  Google Scholar 

  44. 44.

    Dorozhkin SV (2013) J Mater Sci Mater Med 24(6):1335–1363

    CAS  Article  Google Scholar 

  45. 45.

    Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) 2nd edn. Wiley, Chichester

  46. 46.

    Brown MRW, Kornberg A (2004) Proc Natl Acad Sci USA 101:16085–16087

    CAS  Article  Google Scholar 

  47. 47.

    Kornberg A, Rao NN, Ault-Riché D (1999) Annu Rev Biochem 68:89–125

    CAS  Article  Google Scholar 

  48. 48.

    Kornberg A (1995) J Bacteriol 177:491–496

    CAS  Article  Google Scholar 

  49. 49.

    Hacchou Y, Uematsu T, Ueda O, Usui Y, Uematsu S, Takahashi M, Uchihashi T, Kawazoe Y, Shiba T, Kurihara S, Yamaoka M, Furusawa K (2007) J Den Res 86:893–897

    CAS  Article  Google Scholar 

  50. 50.

    Leyhausen G, Lorenz B, Zhu H, Geurtsen W, Bohnensack R, Müller WE, Schröder HC (1998) J Bone Min Res 13:803–812

    CAS  Article  Google Scholar 

  51. 51.

    Usui Y, Uematsu T, Uchihashi T, Takahashi M, Takahashi M, Ishizuka M, Doto R, Tanaka H, Komazaki Y, Osawa M, Yamada K, Yamaoka M, Furusawa K (2010) J Dent Res 89:504–509

    CAS  Article  Google Scholar 

  52. 52.

    Schröder HC, Kurz L, Müller WE, Lorenz B (2000) Biochem (Mosc) 65:296–303

    Google Scholar 

  53. 53.

    Omelon SJ, Grynpas MD (2008) Chem Rev 108:4694–4715

    CAS  Article  Google Scholar 

  54. 54.

    Salinas AJ, Esbrit P, Vallet-Regí M (2013) Biomater Sci 1(1):40–51

    CAS  Article  Google Scholar 

  55. 55.

    Samavedi S, Whittington AR, Goldstein AS (2013) Acta Biomater 9(9):8037–8045

    CAS  Article  Google Scholar 

  56. 56.

    Fukui H, Taki Y, Abe Y (1977) J Dent Res 56:1260

    CAS  Article  Google Scholar 

  57. 57.

    Nelson SR, Wolford LM, Lagow RJ, Capano PJ, Davis WL (1993) J Oral Maxillofac Surg 51:1363–1371

    CAS  Article  Google Scholar 

  58. 58.

    Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi MJ, Dumitriu M (2002) Biomaterial 23:2063–2070

    CAS  Article  Google Scholar 

  59. 59.

    Chow LC, Eanes ED (2001) Monogr. Oral Sci. Basel, Karger, 18:94–111

  60. 60.

    Hench LL (1977) J Non-Cryst Solids 25:343–369

    CAS  Article  Google Scholar 

  61. 61.

    Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Proc Nat Acad Sci USA 103:903–908

    CAS  Article  Google Scholar 

  62. 62.

    Smith SA, Morrissey JH (2008) Blood 112:2810–2816

    CAS  Article  Google Scholar 

  63. 63.

    Pendurthi UR (2010) Blood 116:4042–4043

    CAS  Article  Google Scholar 

  64. 64.

    Mutch NJ, Engel R, Uitte de Willige S, Philippou H, Ariëns RAS (2010) Blood 115:3980–3988

    CAS  Article  Google Scholar 

  65. 65.

    Donovan AJ, Kalkowski J, Smith SA, Morrissey JH, Liu Y (2014) Biomacromolecules 15:3976–3984

    CAS  Article  Google Scholar 

  66. 66.

    Docampo R, Morrissey JH, Mutch NJ, Smith SA (2006) patent US9597375B2, University of Illinois, USA

  67. 67.

    Momeni A, Valliant EM, Brennan-Pierce EP, Shankar JJ, Abraham R, Colp P, Filiaggi MJ (2015) Acta Biomater 32:286–297

    Article  CAS  Google Scholar 

  68. 68.

    Momeni A, Filliaggi MJ (2016) Acta Biomater 41:328–341

    CAS  Article  Google Scholar 

  69. 69.

    Umegaki T, Kanazawa T (1979) Bull Chem Soc Jpn 52:2124–2126

    CAS  Article  Google Scholar 

  70. 70.

    Valliant EM, Filiaggi MJ (2019) J Biomed Mater Res Part B 107B:2638–2648

    Article  CAS  Google Scholar 

  71. 71.

    Lima ECO, Beppu MM, Galembeck F, Valente JF, Soares DM (1996) J Braz Chem Soc 7:209–215

    CAS  Article  Google Scholar 

  72. 72.

    Lima ECO, Moita Neto JM, Fujiwara FY, Galembeck F (1995) J Colloid Interface Sci 176:388–396

    CAS  Article  Google Scholar 

  73. 73.

    De Souza EF, Bezerra CC, Galembeck F (1997) Polymer 38:6285–6293

    Article  Google Scholar 

  74. 74.

    Dion A, Langman M, Hall G, Filiaggi MJ (2005) Biomaterials 26:7276–7285

    CAS  Article  Google Scholar 

  75. 75.

    Comeau P, Filliaggi MJ (2017) J Biomater Appl 32:126–136

    CAS  Article  Google Scholar 

  76. 76.

    Schofield SC, Berno B, Langman M, Hall G, Filiaggi MJ (2006) J Dent Res 85:643–647

    CAS  Article  Google Scholar 

  77. 77.

    Petrone HallG, Langman M, Filiaggi M (2008) Acta Biomater 4:408

    Article  CAS  Google Scholar 

  78. 78.

    Bray JM, Filliaggi MJ, Bowen CV, Beyea SD (2012) Acta Biomater 8:3821–3831

    CAS  Article  Google Scholar 

  79. 79.

    Ruhé PQ, Kroese-Deutman HC, Wolke JGC, Spauwen PHM, Jansen JA (2004) Biomaterials 25(11):2123–2132

    Article  CAS  Google Scholar 

  80. 80.

    Cabrejos-Azama J, Alkhraisat MH, Rueda C, Torres J, Pintado C, Blanco L, López-Cabarcos E (2016) Mater Sci Eng C 61:72–78

    CAS  Article  Google Scholar 

  81. 81.

    Graziani V, Fosca M, Egorov AA, Zobkov YV, Fedotov AY, Baranchikov AE, Ortenzi M, Caminiti R, Komlev VS, Rau JV (2016) Ceram Int 42(15):17310–17316

    CAS  Article  Google Scholar 

  82. 82.

    Trajano VCC, Costa KJR, Lanza CRM, Sinisterra RD, Cortés ME (2016) Mater Sci Eng C 64:370–375

    CAS  Article  Google Scholar 

  83. 83.

    Altomare L, Visai L, Bloise N, Arciola CR, Ulivi L, Canadiani G, Cigada A, Chiesa R, De Nardo L (2012) Int J Artif Organs 35:876–883

    CAS  Article  Google Scholar 

  84. 84.

    Shao F, Liu L, Fan K, Cai Y, Yao J (2012) J Mater Sci 47:1054–1058

    CAS  Article  Google Scholar 

  85. 85.

    Alexopoulou M, Mystiridou E, Mouzakis D, Zaoutsos S, Fatouros DG, Bouropoulos N (2016) Cryst Res Technol 51:41–48

    CAS  Article  Google Scholar 

  86. 86.

    Brohede U, Forsgren J, Roos S, Mihranyan A, Engqvist H, Strømme M (2009) J Mater Sci Mater Med 20:1859–1867

    CAS  Article  Google Scholar 

  87. 87.

    Luginbuehl V, Ruffieux K, Hess C, Reichardt D, von Rechenberg B, Nuss K (2010) J Biomed Mater Res Part B Appl Biomater 92:341–352

    Article  CAS  Google Scholar 

  88. 88.

    Gibson I, Momeni, A, Filiaggi M (2019) J Appl Bio Func Mat 17:1–9

  89. 89.

    Matsumoto MA, Caviquioli G, Biguetti CC, Holgado LA, Saraiva PP, Rennó ACM, Kawakami RY (2012) J Mater Sci Mater Med 23:1447–1456

    CAS  Article  Google Scholar 

  90. 90.

    Hench LL (2006) J Mater Sci Mater Med 17:967–978

    CAS  Article  Google Scholar 

  91. 91.

    Webster TJ, Ahn ES (2007) Adv Biochem Eng Biotechnol 103:275–308

    CAS  Google Scholar 

  92. 92.

    Baksh D, Davies JE, Kim S (1998) J Mater Sci Mater Med 9:743–748

    CAS  Article  Google Scholar 

  93. 93.

    Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA (2001) Biomaterial 22:963–972

    CAS  Article  Google Scholar 

  94. 94.

    Grynpas MD, Pilliar RM, Kandel RA, Renlund R, Filiaggi M, Dumitriu M (2002) Biomaterial 23:2063–2070

    CAS  Article  Google Scholar 

  95. 95.

    Tarek Y, Pilliar RM, Christopher A (2002) J Biomed Mater Res 61:482–492

    Article  CAS  Google Scholar 

  96. 96.

    Stephen DW, Grynpas MD, Pilliar RM, Kande RA (2002) J Biomed Mater Res 62:323–330

    Article  CAS  Google Scholar 

  97. 97.

    Lee YM, Seol YJ, Lim YT, Kim S, Han SB, Rhyu IC, Baek SH, Heo SJ, Choi JY, Klokkevold PR, Chung CP (2001) J Biomed Mater Res 54:216–223

    CAS  Article  Google Scholar 

  98. 98.

    Qiu K, Zhao X, Wan C, Zhao C, Chen Y (2006) Biomaterial 27:1277–1286

    CAS  Article  Google Scholar 

  99. 99.

    Chen Y, Shi G, Ding Y, Yu X, Zhang X, Zhao C, Wan CX (2008) J Mater Sci Mater Med 19:2655–2662

    CAS  Article  Google Scholar 

  100. 100.

    Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J (2012) Acta Biomater 8:350–360

    CAS  Article  Google Scholar 

  101. 101.

    Pilliar RM, Kandel RA, Grynpas MD, Hu Y (2013) J Biomed Mater Res B Appl Biomater 101:1–8

    Article  CAS  Google Scholar 

  102. 102.

    Ryf C, Goldhahn S, Radziejowski M, Blauth M, Hanson B (2009) Eur J Trauma Emerg Surg 4:1–8

    Google Scholar 

  103. 103.

    Apelt D, Theisis F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger, Bohner M, Matter S, Auer JA, von Rechenberg B (2004) Biomaterials 25(7–8):1439–1451

    CAS  Article  Google Scholar 

  104. 104.

    Bohner M (2010) Eur Cells Mater 20:1–12

    CAS  Article  Google Scholar 

  105. 105.

    Chow LC, Takagi S (2006) patent CA2624331A1, ADA Foundation, Canada

  106. 106.

    Engstrand J, Aberg J, Engqvist H (2013) Mater Sci Eng C 33(1):527–531

    CAS  Article  Google Scholar 

  107. 107.

    Bohner M, Tiainen H, Michel P, Dӧbelin N (2015) J Mater Sci Mater Med 26(63):1–13

    CAS  Google Scholar 

  108. 108.

    Carrel JP, Wiskott A, Moussa M, Rieder P, Scherrer S, Durual S (2014) Clin Oral Impl Res 0:1–8

    Google Scholar 

  109. 109.

    Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M (2006) Biomaterial 27:4120–4131

    CAS  Article  Google Scholar 

  110. 110.

    Müller WEG, Wang S, Ackermann M, Gerich T, Neufurth M, Wiens M, Schröder HC, Wang X (2019) Adv Funct Mat 29:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to grants 2016/16900-9 and #2013/07793-6, São Paulo Research Foundation—FAPESP for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas F. Franco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franco, D.F., De Oliveira Barud, H.G., Barud, H.S. et al. A review on polyphosphate coacervates—structural properties and bioapplications. J Sol-Gel Sci Technol 94, 531–543 (2020). https://doi.org/10.1007/s10971-020-05228-9

Download citation

Keywords

  • Polyphosphate coacervates
  • Graham’s salt
  • Bioglasses
  • Biomedical applications
  • Drug-delivery systems