Abstract
Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) remains to be the foremost choice in biomedical field right from repair/replacement for the damaged hard tissues to be acting as effective drug delivery agent for tissue healing. Though, HAP is similar in composition with the mineral component of bone, some issues such as lack of mechanical and antimicrobial properties, low degradation, lesser drug loading capability, lower stimuli responsiveness, and targeted deficiency have continuously posed major challenges. However, enactment of various physicochemical, biological, mechanical properties can be improved by articulating particles morphology, size, structure, porosity, synthesis technique, and ionic substitution into HAP structure. Unique structure of HAP permits various anionic and cationic substitutions. Among the available synthesis routes, hydrothermal and microwave-assisted techniques seem to be the most suitable techniques to synthesize HAP with close control over desirable properties. This review primarily focuses on highlighting the customization of desirable properties by controlling particles size, morphology, synthesis parameters, and substitution of mono/multi ions into HAP structure to obtain a product appropriate for bone-tissue engineering and drug delivery applications.

Highlights
-
Effect of particle size and morphology on desirable properties of hydroxyapatite is explored.
-
Influence of hydrothermal and microwave synthesis techniques and their governing parameters are discussed in detail.
-
Role of mono and multi ionic substitution to control the desirable properties is discussed.
-
Use of tailor-made hydroxyapatite is reviewed for bone-tissue engineering and drug delivery applications.
This is a preview of subscription content, access via your institution.











References
Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13:94–117
Ratnayake JTB, Mucalo M, Dias GJ (2017) Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res—Part B Appl Biomater 105:1285–1299
Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21
Shastri V (2005) Non-degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 4:331–337
Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065
Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R: Rep. 57:1–27
Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406
Kalita SJ, Bhardwaj A, Bhatt HA (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–449
Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510
Arcos D, Vallet-Regi M (2013) Bioceramics for drug delivery. Acta Mater 61:890–911
Mayer C, Bagheri F, Zandi M, Urch H, Mirzadeh H, Eslaminejad MB, Mivehchi H (2009) Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res Part A 92A:1244–1255
Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ (2012) The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate cer. Biomed Mater 7:1–14
Elliott JC (1994) Hydroxyapatite and nonstoichiometric apatites. In: Studies in inorganic chemistry. 111–189
Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342
Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Crystallogr 11:308–309
Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894
Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669
Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone-tissues. Prog Solid State Chem 32:1–31
Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953
Yoshimura M, Suda H, Okamoto K, Ioku K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399–3402
Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B, Appl Biomater 83:340–344
Vallet-Regí M (2001) Ceramics for medical applications. Dalton Trans 2:97–108
Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101
D’ Elia NL, Mathieu C, Hoemann CD, Laiuppa JA, Santillan GE, Messina PV (2015) Bone-repair properties of biodegradable hydroxyapatite nano-rods superstructures. Nanoscale 7:18751–18762
Gautam CR, Kumar S, Biradar S, Jose S, Mishra VK (2016) Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material. RSC Adv 6:67565–67574
Bandyopadhyay A, Bernard S, Xue W, Böse S (2006) Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89:2675–2688
Curran DJ, Fleming TJ, Towler MR, Hampshire S (2011) Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J Mech Behav Biomed Mater 4:2063–2073
Bose S, Banerjee A, Dasgupta S, Bandyopadhyay A (2009) Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J Am Ceram Soc 92:323–330
Li H, Song X, Li B, Kang J, Liang C, Wang H, Yu Z, Qiao Z (2017) Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Mater Sci Eng C 77:1078–1087
Dasgupta S, Tarafder S, Bandyopadhyay A, Bose S (2013) Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Mater Sci Eng C 33:2846–2854
Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572
Ravi ND, Balu R, Sampath Kumar TS (2012) Strontium-substituted calcium deficient hydroxyapatite nanoparticles: Synthesis, characterization, and antibacterial properties. J Am Ceram Soc 95:2700–2708
Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134
Kumar GS, Govindan R, Girija EK (2014) In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B 2:5052–5060
Dorozhkin SV (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942
Lin K, Chang J (2015) Structure and properties of hydroxyapatite for biomedical applications. In: Hydroxyapatite (HAp) for biomedical applications, Elsevier Ltd. 3–19
Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone-tissue engineering. Acta Biomater 7:2769–2781
Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80
Yang LX, Yin JJ, Wang LL, Xing GX, Yin P, Liu QW (2012) Hydrothermal synthesis of hierarchical hydroxyapatite: preparation, growth mechanism and drug release property. Ceram Int 38:495–502
Sereni A, Trombelli L, Mischiati C, del Senno L, Sibilla P, Banzi M, Manzati E, Aguiari G (2009) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85:354–358
Yuan X, Zhu B, Ma X, Tong G, Su Y, Zhu X (2013) Low temperature and template-free synthesis of hollow hydroxy zinc phosphate nanospheres and their application in drug delivery. Langmuir 29:12275–12283
Liu TY, Chen SY, Liu DM, Liou SC (2005) On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Controlled Release 107:112–121
Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188
Park J, Lakes RS (2007) Biomaterials: an introduction. 3rd edn. Springer, USA
Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810
Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, Edirisinghe MJ (2004) In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci: Mater Med 15:441–445
Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345
Lemons JE, Catledge SA, Lacefield WR, Woodard S, Fries MD, Vohra YK, Venugopalanc R (2002) Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol 2:293–312
Webster TJ, Siegel RW, Bizios R (2001) Enhanced surface and mechanical properties of nanophase ceramics to achieve orthopaedic/dental implant efficacy. Key Eng Mater 192–195:321–324
Okada M, Furukawa K, Serizawa T, Yanagisawa Y, Tanaka H, Kawai T, Furuzono T (2009) Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 25:6300–6306
Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483
Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5:277–284
Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230
Padilla S, Izquierdo-Barba I, Vallet-Regí M (2008) High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater 20:5942–5944
Zhao XY, Zhu YJ, Chen F, Lu BQ, Wu J (2013) Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release. CrystEngComm 15:206–212
Yang L, Sheldon BW, Webster TJ (2010) Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull 89:24–32
Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol-gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470
Lin K, Chang J, Lu J, Wu W, Zeng Y (2007) Properties of β-Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Int 33:979–985
Guo YP, Yao YB, Ning CQ, Guo YJ, Chu LF (2011) Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater Lett 65:2205–2208
Agrawal S, Kelkar M, De A, Kulkarni AR, Gandhi MN (2016) Surfactant free novel one-minute microwave synthesis, characterization and cell toxicity study of mesoporous strontium hydroxyapatite nanorods. RSC Adv 6:94921–94926
Kawachi G, Sasaki S, Nakahara K, Ishida EH, Ioku K (2009) Porous apatite carrier prepared by hydrothermal method. Key Eng Mater 309–311:935–938
Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31:3374–3383
Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D, Guenounou M, Phillips TM (2004) The effect of the physical characteristics of hydroxyapatite particles on human monocytes IL-18 production in vitro. Biomaterials 25:5921–5927
Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci 110:10753–10758
Zhao P, Liu M-C, Lin H-C, Sun X-Y, Li Y-Y, Yan S-Q (2017) Synthesis and drug delivery applications for mesoporous silica nanoparticles. J Med Biotechnol 1:1–5
Shao F, Liu L, Fan K (2012) Ibuprofen loaded porous calcium phosphate nanospheres for skeletal drug delivery system. J Mater Sci 47:1054–1058
Murugan R, Ramakrishna S (2006) Designing biological apatite suitable for neomycin delivery. J Mater Sci 41:4343–4347
Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16:113–118
Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A (2009) Interaction of Sr-doped hydroxy apatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res—Part A 89:594–600
Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103:1666–1674
Legeros RZ (1993) Biodegradation and bioresorption phosphate ceramics of calcium. Clin Mater 14:65–88
Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G (2007) Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater 3:961–969
Norhidayu D, Sopyan I, Ramesh S (2008) Development of zinc doped hydroxyapatite for bone implant applications. In: Proceedings of the International Conference on Construction and Building Technology 2008:257–270
Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44:345–354
Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G (2006) Biomimetic Mg- and Mg2CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc 26:2593–2601
Kumta PN, Sfeir C, Lee DH, Olton D, Choi D (2005) Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomater 1:65–83
Yasukawa A, Ouchi S, Kandori K, Ishikawa T (1996) Preparation and characterization of magnesium-calcium hydroxyapatites. J Muter Chem 6:1401–1405
Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr Sect B: Struct Sci 52:87–92
Gibson IR, Bonfield W (2002) Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci: Mater Med 13:685–693
Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour. J Mater Sci: Mater Med 19:239–247
Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654
Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Mater Werkst 37:474–477
Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP (2003) Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg Mater 39:947–950
Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016
Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorriné W, De Broe ME et al. (2004) Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 75:405–415
Shen Y, Liu J, Lin K, Zhang W (2012) Synthesis of strontium substituted hydroxyapatite whiskers used as bioactive and mechanical reinforcement material. Mater Lett 70:76–79
Kim HW, Koh YH, Kong YM, Kang JG, Kim HE (2004) Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J Mater Sci: Mater Med 15:1129–1134
Kavitha M, Subramanian R, Narayanan R, Udhayabanu V (2014) Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technol 253:129–137
Ovesen J, Moller-Madsen B, Thomsen JS, Danscher G, Mosekilde L (2001) The positive effects of zinc on skeletal strength in growing rats. Bone 29:565–570
Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64:163–172
Yamaguchi M (1998) Role of Zinc in Bone Formation and Bone Resorption. J Trace Elem Exp Med 11:119–135
Miao S, Cheng K, Weng W, Du P, Shen G, Han G, Yan W, Zhang S (2008) Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta Biomater 4:441–446
Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149
Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1997) Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium. J Inorg Biochem 66:259–265
Kaygili O, Tatar C (2012) The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol-gel method. J Sol–Gel Sci Technol 61:296–309
Jallot E, Nedelec JM, Grimault AS, Chassot E, Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D (2005) STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf B: Biointerfaces 42:205–210
Yingguang L, Zhuoru Y, Jiang C (2007) Preparation, characterization and antibacterial property of cerium substituted hydroxyapatite nanoparticles. J Rare Earths 25:452–456
Feng Z, Liao Y, Ye M (2005) Synthesis and structure of cerium-substituted hydroxyapatite. J Mater Sci: Mater Med 16:417–421
Reardon PJT, Huang J, Tang J (2013) Morphology controlled porous calcium phosphate nanoplates and nanorods with enhanced protein loading and release functionality. Adv Healthc Mater 2:682–686
Medvecký Ľ, Štulajterová R, Parilák Ľ, Trpčevská J, Ďurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A: Physicochem Eng Asp 281:221–229
Suitch PR (1985) The structural location and role of Mn2+ partially substituted for Ca2+ in fluorapatite. Acta Cryst 41:173–179
Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, Burghaus O, Reinen D (2003) Manganese in precipitated hydroxyapatites. Eur J Inorg Chem 2003:1445–1451
Mayer I, Schleich Y, Gdalya S, Reinen D, Burghaus O, Popov I, Cuisinier FJG (2006) Phase relations between β-tricalcium phosphate and hydroxyapatite with manganese(II): structural and spectroscopic properties. Eur J Inorg Chem 7:1460–1465
Li Y, TeckNam C, PingOoi C (2009) Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J Phys: Conf Ser 187:012024
Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P (2005) Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 26:2381–2389
LeGeros R (1965) Effect of carbonate on lattice parameters of apatite. Nature 835–837
Lacout J, Nounah A, Ferhat M (1998) Strontium-cadmium substitution in hydroxyl and fluorapatites. Ann Chem Sci Mater 23:57–60
Shimoda S, Aoba T, Moreno EC, Miake Y (1990) Effect of solution composition on morphological and structural features of carbonated calcium apatites. J Dent Res 69:1731–1740
Murugan R, Ramakrishna S (2006) Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater 2:201–206
Ślósarczyk A, Paszkiewicz Z, Paluszkiewicz C (2005) FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct 744–747:657–661
Qu H, Wei M (2006) The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater 2:113–119
Ten Cate JM, Featherstone JDB (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2:283–296
Legeros RZ, Silverstone LM, Daculsi G, Kerebel LM (1983) In vitro caries-like lesion formation in F-containing tooth enamel. J Dent Res 62:138–144
Qu H, Wei M (2005) Synthesis and characterization of fluorine-containing hydroxyapatite by a pH-cycling method. J Mater Sci: Mater Med 16:129–133
Chen Y, Miao X (2005) Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials 26:1205–1210
Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516
Tang XL, Xiao XF, Liu RF (2005) Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett 59:3841–3846
Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37:1219–1229
Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620
Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G (2008) Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C 28:179–187
Porter AE, Best SM, William B (2003) Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. J Biomed Mater Res 68A:133–141
Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N,WB (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79:723–730
Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032
Bang LT, Ishikawa K, Othman R (2011) Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram Int 37:3637–3642
Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24:1389–1398
Gasquères G, Bonhomme C, Maquet J, Babonneau F, Hayakawa S, Kanaya T, Osaka A (2008) Revisiting silicate substituted hydroxyapatite by solid-state NMR. Magn Reson Chem 46:342–346
Lilja M, Lindahl C, Xia W, Engqvist H, Strømme M (2013) The effect of Si-doping on the release of antibiotic from hydroxyapatite coatings. J Biomater Nanobiotechnol 04:237–241
Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533
Alshemary AZ, Goh YF, Akram M, Razali IR, Abdul Kadir MR, Hussain R (2013) Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater Res Bull 48:2106–2110
Toyama T, Kameda S (2013) Synthesis of sulfate-ion-substituted hydroxyapatite from amorphous calcium phosphate. Bioceram Dev Appl 3:10–12
Lin K, Qu H, Zhou Y, Chen F, Zhu Y, Chang J, Zhou Y (2011) Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J Mater Chem 21:16558–16565
Imrie FE, Aina V, Lusvardi G, Malavasi G, Gibson IR, Cerrato G, Annaz B (2013) Synthesis and characterisation of strontium and magnesium co-substituted biphasic calcium phosphates. Key Eng Mater 529–530:88–93
Nsar S, Hassine A, Bouzouita K (2013) Sintering and mechanical properties of magnesium and fluorine co-substituted hydroxyapatites. J Biomater Nanobiotechnol 04:1–11
Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L (2014) Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf A: Physicochem Eng Asp 451:172–180
Zhang N, Zhai D, Chen L, Zou Z, Lin K, Chang J (2014) Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater Sci Eng C 37:286–291
Manafi S, Joughehdoust S, Badiee SH (2009) Effect of pH on morphology, size and composition of calcium phosphate phase obtained in wet chemical. Int J Nanomanuf 5:169–178
Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A (2003) A novel sol-gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824
Zhu R, Yu R, Yao J, Wang D, Ke J (2008) Morphology control of hydroxyapatite through hydrothermal process. J Alloy Compd 457:555–559
Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546
Mishra VK, Srivastava SK, Asthana BP, Kumar D (2012) Structural and spectroscopic studies of hydroxyapatite nanorods Formed via microwave-assisted synthesis route. J Am Ceram Soc 95:2709–2715
Sl PM, Ashok M, Balasubramanian T, Riyasdeen A, Akbarsha MA (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63:2123–2125
Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X (2010) Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R: Rep. 70:225–242
Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol-gel process. J Solid State Chem 177:3092–3098
Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143
Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377
Coreño AJ, Coreño AO, Cruz RJJ, Rodríguez CC (2005) Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Optical Mater 27:1281–1285
Cao LY, Zhang CB, Huang JF (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Int 31:1041–1044
Qi Y, Shen J, Jiang Q, Bo J, Chen J, Zhang X (2015) The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method. Adv Powder Technol 26:1041–1046
Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744
Farzadi A, Solati-Hashjin M, Bakhshi F, Aminian A (2011) Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int 37:65–71
Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166
Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633
Sadat-shojai M, Khorasani M, Dinpanah-khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621
Yoshimura MBK (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103
Chandanshive BB, Rai P, Rossi ALR, Ersen O, Khushalani D (2013) Synthesis of hydroxyapatite for biomedical applications. Mater Sci Eng C 33:2981–2986
Chen F, Zhu YJ, Wang KW, Zhao KLe (2011) Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm 13:1858–1863
Lee DK, Park JY, Kim MR, Jang DJ (2011) Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms. CrystEngComm 13:5455–5459
Lester E, Tang SVY, Khlobystov A, Rose VL, Buttery L, Roberts CJ (2013) Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis. CrystEngComm 15:3256–3260
Ma MG, Zhu YJ, Chang J (2008) Solvothermal preparation of hydroxyapatite microtubes in water/N,N-dimethylformamide mixed solvents. Mater Lett 62:1642–1645
Yan L, Li Y, Deng Z, Zhuang J, Sun X (2001) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int J Inorg Mater 3:633–637
Sadat-Shojai M, Atai M, Nodehi A (2011) Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582
Zhu Y, Xu L, Liu C, Zhang C, Wu N (2018) Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method. AIP Adv 8:1–11
Bricha M, Belmamouni Y, Essassi EM, Ferreira JMF, Mabrouk K, El (2012) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J Nanosci Nanotechnol 12:8042–8049
Giang LT, Hoai TT, Binh BTT, Nga NK, Tuan PNM, Huy TQ (2017) Hydrothermal synthesis of hydroxyapatite nanorods for rapid formation of bone-like mineralization. J Electron Mater 46:5064–5072
Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KDK, Lu WW (2009) Solubility of strontium-substituted apatite by solid titration. Acta Biomater 5:1678–1685
Lin K, Liu P, Wei L, Zou Z, Zhang W, Qian Y, Shen Y, Chang J (2013) Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem Eng J 222:49–59
Earl JS, Wood DJ, Milne SJ (2006) Hydrothermal synthesis of hydroxyapatite. J Phys 26:268–271
Lak A, Mazloumi M, Mohajerani MS, Zanganeh S, Shayegh MR, Kajbafvala A, Arami H, Sadrnezhaad SK (2008) Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. J Am Ceram Soc 91:3580–3584
Mishra VK, Rai SB, Asthana BP, Parkash O, Kumar D (2014) Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram Int 40:11319–11328
Kumar AR, Kalainathan S, Saral AM (2010) Microwave assisted synthesis of hydroxyapatite nano strips. Cryst Res Technol 45:776–778
Liu J, Li K, Wang H, Zhu M, Yan H (2004) Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett 396:429–432
Iqbal N, Rafiq M, Kadir A, Ahmad N, Nik N, Humaimi N, Raman M, Kamarul T (2012) Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater Lett 89:118–122
Wang YZ, Fu Y (2011) Microwave-hydrothermal synthesis and characterization of hydroxyapatite nanocrystallites. Mater Lett 65:3388–3390
Siddharthan A, Seshadri SK, Kumar TSS (2006) Influence of microwave power on nanosized hydroxyapatite particles. Scr Mater 55:175–178
Silva CC, Graça MPF, Valente MA, Góes JC, Sombra ASB (2006) Microwave preparation, structure and electrical properties of calcium–sodium–phosphate biosystem. J Non-Cryst Solids 352:3512–3517
Vani R, Raja SB, Sridevi TS, Savithri K, Devaraj SN, Girija EK, Thamizhavel A, Kalkura SN (2011) Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection. Nanotechnology 22:285701
Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: Rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341
Zhao XY, Zhu YJ, Qi C, Chen F, Lu BQ, Zhao J, Wu J (2013) Hierarchical hollow hydroxyapatite microspheres: Microwave-assisted rapid synthesis by using pyridoxal-5′-phosphate as a phosphorus source and application in drug delivery. Chem Asian J 8:1313–1320
Pal R, Maninder S, Mehta S, Shukla S, Singh S (2017) Influence of microwave power and irradiation time on some properties of hydroxyapatite nanopowders. J Sol–Gel Sci Technol 84:332–340
Yang Z, Jiang Y, Wang YJ, Ma LY, Li F (2004) Preparation and thermal stability analysis of hydroxyapatite derived from the precipitation process and microwave irradiation method. Mater Lett 58:3586–3590
Akram M, Alshemary AZ, Goh YF, Wan Ibrahim WA, Lintang HO, Hussain R (2015) Continuous microwave flow synthesis of mesoporous hydroxyapatite. Mater Sci Eng C 56:356–362
Wang KW, Zhu YJ, Chen F, Cheng GF, Huang YH (2011) Microwave-assisted synthesis of hydroxyapatite hollow microspheres in aqueous solution. Mater Lett 65:2361–2363
Fang Y, Agrawal DK, Roy DM, Roy R (1994) Microwave sintering of hydroxyapatite ceramics. J Mater Res 9:180–187
Cao JM, Feng J, Deng SG, Chang X, Wang J, Liu JS, Lu P, Lu HX, Zheng MB, Zhang F et al. (2005) Microwave-assisted solid-state synthesis of hydroxyapatite nanorods at room temperature. J Mater Sci 40:6311–6313
Wang H, Liu J, Li K, Wang H, Zhu M, Xu H (2005) Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology 16:82–87
Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: Formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574
Wang A, Yin H, Liu D, Wu H, Wada Y, Ren M, Xu Y, Jiang T, Cheng X (2007) Effects of organic modifiers on the size-controlled synthesis of hydroxyapatite nanorods. Appl Surf Sci 253:3311–3316
Arami H, Mohajerani M, Mazloumi M, Khalifehzadeh R, Lak A, Sadrnezhaad SK (2009) Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J Alloy Compd 469:391–394
Wu X, Song X, Li D, Liu J, Zhang P, Chen X (2012) Preparation of mesoporous nano-hydroxyapatite using a surfactant template method for protein delivery. J Bionic Eng 9:224–233
Shin Y, Aoki H, Yoshiyama N, Akao M, Higashikata M (1992) Surface properties of hydroxyapatite ceramic as new percutaneous material in skin tissue. J Mater Sci: Mater Med 3:219–221
Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27:2450–2467
Matsunaga K, Murata H, Mizoguchi T, Atsushi Nakahira (2010) Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater 6:2289–2293
Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888
Rodríguez-Ruiz I, Delgado-López JM, Durán-Olivencia MA, Iafisco M, Tampieri A, Colangelo D, Prat M, Gómez-Morales J (2013) PH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir 29:8213–8221
Lin K, Chen L, Liu P, Zou Z, Zhang M, Shen Y, Qiao Y, Liu X, Chang J (2013) Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery. CrystEngComm 15:2999–3008
Venkatasubbu GD, Ramasamy S, Avadhani GS, Ramakrishnan V, Kumar J (2013) Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol 235:437–442
Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh J (2018) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44:6062–6071
Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN (2012) Blood compatibility of iron-doped nanosize yydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210
Victor SP, Paul W, Jayabalan M, Sharma CP (2014) Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm 16:9033–9042
Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW (2013) Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 1:2447–2450
Leprêtre S, Chai F, Hornez JC, Vermet G, Neut C, Descamps M, Hildebrand HF, Martel B (2009) Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 30:6086–6093
Dion A, Langman M, Hall G, Filiaggi M (2005) Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials 26:7276–7285
Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharm-Drug Res 67:217–223
Balcerzak J, Mucha M (2010) Analysis of model drug release kinetics from complex matrices of polylactide-chitosane. Prog Chem Appl Chitin Derivatives 15:117–126
Jarosz M, Pawlik A, Szuwarzyński M, Jaskuła M, Sulka GD (2016) Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids Surf B: Biointerfaces 143:447–454
Heimann RB (2013) Structure, properties, and biomedical performance of osteoconductive bioceramic coatings. Surf Coat Technol 233:27–38
Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758
Basirun WJ, Nasiri-Tabrizi B, Baradaran S (2018) Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality. Crit Rev Solid State Mater Sci 43:177–212
Jiang F, Wang DP, Ye S, Zhao X (2014) Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release. J Mater Sci: Mater Med 25:391–400
Suganthi RV, Elayaraja K, Joshy MIA, Chandra VS, Girija EK, Kalkura SN (2011) Fibrous growth of strontium substituted hydroxyapatite and its drug release. Mater Sci Eng C 31:593–599
Martínez-vázquez FJ, Cabañas MV, Paris JL, Lozano D, Vallet-regí M (2015) Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater 15:200–209
Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J (2011) Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3 Biotech 1:173–186
Dasgupta S, Banerjee SS, Bandyopadhyay A, Bose S (2010) Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir 26:4958–4964
Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F (2013) Highly stable amorphous calcium phosphate porous nanospheres: Microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987
Lai W, Chen C, Ren X, Lee IS, Jiang G, Kong X (2016) Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C 62:166–172
Lelli M, Roveri N, Marzano C, Hoeschele JD, Curci A, Margiotta N, Gandin V, Natile G (2016) Hydroxyapatite nanocrystals as a smart, pH sensitive, delivery system for kiteplatin. Dalton Trans 45:13187–13195
Soriano-Souza CA, Rossi AL, Mavropoulos E, Hausen MA, Tanaka MN, Calasans-Maia MD, Granjeiro JM, Rocha-Leão MHM, Rossi AM (2015) Chlorhexidine-loaded hydroxyapatite microspheres as an antimicrobial delivery system and its effect on in vivo osteo-conductive properties. J Mater Sci: Mater Med 26:166–180
Kundu B, Ghosh D, Sinha MK, Sen PS, Balla VK, Das N, Basu D (2013) Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceram Int 39:9557–9566
Author contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, G., Singh, R.P. & Jolly, S.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review. J Sol-Gel Sci Technol 94, 505–530 (2020). https://doi.org/10.1007/s10971-020-05222-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10971-020-05222-1
Keywords
- Hydroxyapatite
- Ionic substitution
- Microwave
- Hydrothermal
- Bone-tissue engineering
- Drug delivery