Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review

Abstract

Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) remains to be the foremost choice in biomedical field right from repair/replacement for the damaged hard tissues to be acting as effective drug delivery agent for tissue healing. Though, HAP is similar in composition with the mineral component of bone, some issues such as lack of mechanical and antimicrobial properties, low degradation, lesser drug loading capability, lower stimuli responsiveness, and targeted deficiency have continuously posed major challenges. However, enactment of various physicochemical, biological, mechanical properties can be improved by articulating particles morphology, size, structure, porosity, synthesis technique, and ionic substitution into HAP structure. Unique structure of HAP permits various anionic and cationic substitutions. Among the available synthesis routes, hydrothermal and microwave-assisted techniques seem to be the most suitable techniques to synthesize HAP with close control over desirable properties. This review primarily focuses on highlighting the customization of desirable properties by controlling particles size, morphology, synthesis parameters, and substitution of mono/multi ions into HAP structure to obtain a product appropriate for bone-tissue engineering and drug delivery applications.

Highlights

  • Effect of particle size and morphology on desirable properties of hydroxyapatite is explored.

  • Influence of hydrothermal and microwave synthesis techniques and their governing parameters are discussed in detail.

  • Role of mono and multi ionic substitution to control the desirable properties is discussed.

  • Use of tailor-made hydroxyapatite is reviewed for bone-tissue engineering and drug delivery applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13:94–117

    CAS  Article  Google Scholar 

  2. 2.

    Ratnayake JTB, Mucalo M, Dias GJ (2017) Substituted hydroxyapatites for bone regeneration: a review of current trends. J Biomed Mater Res—Part B Appl Biomater 105:1285–1299

    CAS  Article  Google Scholar 

  3. 3.

    Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21

    CAS  Article  Google Scholar 

  4. 4.

    Shastri V (2005) Non-degradable biocompatible polymers in medicine: past, present and future. Curr Pharm Biotechnol 4:331–337

    Article  Google Scholar 

  5. 5.

    Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10:4033–4065

    CAS  Article  Google Scholar 

  6. 6.

    Cui FZ, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng R: Rep. 57:1–27

    Article  CAS  Google Scholar 

  7. 7.

    Murugan R, Ramakrishna S (2005) Development of nanocomposites for bone grafting. Compos Sci Technol 65:2385–2406

    CAS  Article  Google Scholar 

  8. 8.

    Kalita SJ, Bhardwaj A, Bhatt HA (2007) Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater Sci Eng C 27:441–449

    CAS  Article  Google Scholar 

  9. 9.

    Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    CAS  Article  Google Scholar 

  10. 10.

    Arcos D, Vallet-Regi M (2013) Bioceramics for drug delivery. Acta Mater 61:890–911

    CAS  Article  Google Scholar 

  11. 11.

    Mayer C, Bagheri F, Zandi M, Urch H, Mirzadeh H, Eslaminejad MB, Mivehchi H (2009) Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J Biomed Mater Res Part A 92A:1244–1255

    Google Scholar 

  12. 12.

    Ghanaati S, Barbeck M, Detsch R, Deisinger U, Hilbig U, Rausch V, Sader R, Unger RE, Ziegler G, Kirkpatrick CJ (2012) The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate cer. Biomed Mater 7:1–14

    Article  CAS  Google Scholar 

  13. 13.

    Elliott JC (1994) Hydroxyapatite and nonstoichiometric apatites. In: Studies in inorganic chemistry. 111–189

  14. 14.

    Leventouri T (2006) Synthetic and biological hydroxyapatites: crystal structure questions. Biomaterials 27:3339–3342

    CAS  Article  Google Scholar 

  15. 15.

    Posner AS, Perloff A, Diorio AF (1958) Refinement of the hydroxyapatite structure. Acta Crystallogr 11:308–309

    CAS  Article  Google Scholar 

  16. 16.

    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894

    CAS  Article  Google Scholar 

  17. 17.

    Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669

    CAS  Article  Google Scholar 

  18. 18.

    Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone-tissues. Prog Solid State Chem 32:1–31

    Article  CAS  Google Scholar 

  19. 19.

    Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953

    CAS  Article  Google Scholar 

  20. 20.

    Yoshimura M, Suda H, Okamoto K, Ioku K (1994) Hydrothermal synthesis of biocompatible whiskers. J Mater Sci 29:3399–3402

    CAS  Article  Google Scholar 

  21. 21.

    Zhao Y, Zhang Y, Ning F, Guo D, Xu Z (2007) Synthesis and cellular biocompatibility of two kinds of HAP with different nanocrystal morphology. J Biomed Mater Res Part B, Appl Biomater 83:340–344

    Google Scholar 

  22. 22.

    Vallet-Regí M (2001) Ceramics for medical applications. Dalton Trans 2:97–108

    Article  Google Scholar 

  23. 23.

    Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    Article  Google Scholar 

  24. 24.

    D’ Elia NL, Mathieu C, Hoemann CD, Laiuppa JA, Santillan GE, Messina PV (2015) Bone-repair properties of biodegradable hydroxyapatite nano-rods superstructures. Nanoscale 7:18751–18762

    Article  CAS  Google Scholar 

  25. 25.

    Gautam CR, Kumar S, Biradar S, Jose S, Mishra VK (2016) Synthesis and enhanced mechanical properties of MgO substituted hydroxyapatite: a bone substitute material. RSC Adv 6:67565–67574

    CAS  Article  Google Scholar 

  26. 26.

    Bandyopadhyay A, Bernard S, Xue W, Böse S (2006) Calcium phosphate-based resorbable ceramics: Influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89:2675–2688

    CAS  Article  Google Scholar 

  27. 27.

    Curran DJ, Fleming TJ, Towler MR, Hampshire S (2011) Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J Mech Behav Biomed Mater 4:2063–2073

    CAS  Article  Google Scholar 

  28. 28.

    Bose S, Banerjee A, Dasgupta S, Bandyopadhyay A (2009) Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites. J Am Ceram Soc 92:323–330

    CAS  Article  Google Scholar 

  29. 29.

    Li H, Song X, Li B, Kang J, Liang C, Wang H, Yu Z, Qiao Z (2017) Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Mater Sci Eng C 77:1078–1087

    CAS  Article  Google Scholar 

  30. 30.

    Dasgupta S, Tarafder S, Bandyopadhyay A, Bose S (2013) Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Mater Sci Eng C 33:2846–2854

    CAS  Article  Google Scholar 

  31. 31.

    Wang J, Shaw LL (2009) Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomaterials 30:6565–6572

    CAS  Article  Google Scholar 

  32. 32.

    Ravi ND, Balu R, Sampath Kumar TS (2012) Strontium-substituted calcium deficient hydroxyapatite nanoparticles: Synthesis, characterization, and antibacterial properties. J Am Ceram Soc 95:2700–2708

    CAS  Article  Google Scholar 

  33. 33.

    Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  Google Scholar 

  34. 34.

    Kumar GS, Govindan R, Girija EK (2014) In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis. J Mater Chem B 2:5052–5060

    CAS  Article  Google Scholar 

  35. 35.

    Dorozhkin SV (2013) Calcium orthophosphate-based bioceramics. Materials 6:3840–3942

    CAS  Article  Google Scholar 

  36. 36.

    Lin K, Chang J (2015) Structure and properties of hydroxyapatite for biomedical applications. In: Hydroxyapatite (HAp) for biomedical applications, Elsevier Ltd. 3–19

  37. 37.

    Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone-tissue engineering. Acta Biomater 7:2769–2781

    CAS  Article  Google Scholar 

  38. 38.

    Ferraz MP, Monteiro FJ, Manuel CM (2004) Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech 2:74–80

    CAS  Google Scholar 

  39. 39.

    Yang LX, Yin JJ, Wang LL, Xing GX, Yin P, Liu QW (2012) Hydrothermal synthesis of hierarchical hydroxyapatite: preparation, growth mechanism and drug release property. Ceram Int 38:495–502

    CAS  Article  Google Scholar 

  40. 40.

    Sereni A, Trombelli L, Mischiati C, del Senno L, Sibilla P, Banzi M, Manzati E, Aguiari G (2009) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85:354–358

    Google Scholar 

  41. 41.

    Yuan X, Zhu B, Ma X, Tong G, Su Y, Zhu X (2013) Low temperature and template-free synthesis of hollow hydroxy zinc phosphate nanospheres and their application in drug delivery. Langmuir 29:12275–12283

    CAS  Article  Google Scholar 

  42. 42.

    Liu TY, Chen SY, Liu DM, Liou SC (2005) On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Controlled Release 107:112–121

    CAS  Article  Google Scholar 

  43. 43.

    Palazzo B, Iafisco M, Laforgia M, Margiotta N, Natile G, Bianchi CL, Walsh D, Mann S, Roveri N (2007) Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 17:2180–2188

    CAS  Article  Google Scholar 

  44. 44.

    Park J, Lakes RS (2007) Biomaterials: an introduction. 3rd edn. Springer, USA

    Google Scholar 

  45. 45.

    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803–1810

    CAS  Article  Google Scholar 

  46. 46.

    Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jayasinghe SN, Edirisinghe MJ (2004) In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci: Mater Med 15:441–445

    CAS  Google Scholar 

  47. 47.

    Shi Z, Huang X, Cai Y, Tang R, Yang D (2009) Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater 5:338–345

    CAS  Article  Google Scholar 

  48. 48.

    Lemons JE, Catledge SA, Lacefield WR, Woodard S, Fries MD, Vohra YK, Venugopalanc R (2002) Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol 2:293–312

    Article  CAS  Google Scholar 

  49. 49.

    Webster TJ, Siegel RW, Bizios R (2001) Enhanced surface and mechanical properties of nanophase ceramics to achieve orthopaedic/dental implant efficacy. Key Eng Mater 192–195:321–324

    Google Scholar 

  50. 50.

    Okada M, Furukawa K, Serizawa T, Yanagisawa Y, Tanaka H, Kawai T, Furuzono T (2009) Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates. Langmuir 25:6300–6306

    CAS  Article  Google Scholar 

  51. 51.

    Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483

    CAS  Article  Google Scholar 

  52. 52.

    Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5:277–284

    CAS  Article  Google Scholar 

  53. 53.

    Ramesh S, Tan CY, Bhaduri SB, Teng WD, Sopyan I (2008) Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J Mater Process Technol 206:221–230

    CAS  Article  Google Scholar 

  54. 54.

    Padilla S, Izquierdo-Barba I, Vallet-Regí M (2008) High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater 20:5942–5944

    CAS  Article  Google Scholar 

  55. 55.

    Zhao XY, Zhu YJ, Chen F, Lu BQ, Wu J (2013) Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release. CrystEngComm 15:206–212

    CAS  Article  Google Scholar 

  56. 56.

    Yang L, Sheldon BW, Webster TJ (2010) Nanophase ceramics for improved drug delivery: current opportunities and challenges. Am Ceram Soc Bull 89:24–32

    CAS  Google Scholar 

  57. 57.

    Padmanabhan SK, Balakrishnan A, Chu MC, Lee YJ, Kim TN, Cho SJ (2009) Sol-gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470

    CAS  Article  Google Scholar 

  58. 58.

    Lin K, Chang J, Lu J, Wu W, Zeng Y (2007) Properties of β-Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Int 33:979–985

    Article  CAS  Google Scholar 

  59. 59.

    Guo YP, Yao YB, Ning CQ, Guo YJ, Chu LF (2011) Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method. Mater Lett 65:2205–2208

    CAS  Article  Google Scholar 

  60. 60.

    Agrawal S, Kelkar M, De A, Kulkarni AR, Gandhi MN (2016) Surfactant free novel one-minute microwave synthesis, characterization and cell toxicity study of mesoporous strontium hydroxyapatite nanorods. RSC Adv 6:94921–94926

    CAS  Article  Google Scholar 

  61. 61.

    Kawachi G, Sasaki S, Nakahara K, Ishida EH, Ioku K (2009) Porous apatite carrier prepared by hydrothermal method. Key Eng Mater 309–311:935–938

    Google Scholar 

  62. 62.

    Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31:3374–3383

    CAS  Article  Google Scholar 

  63. 63.

    Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D, Guenounou M, Phillips TM (2004) The effect of the physical characteristics of hydroxyapatite particles on human monocytes IL-18 production in vitro. Biomaterials 25:5921–5927

    CAS  Article  Google Scholar 

  64. 64.

    Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci 110:10753–10758

  65. 65.

    Zhao P, Liu M-C, Lin H-C, Sun X-Y, Li Y-Y, Yan S-Q (2017) Synthesis and drug delivery applications for mesoporous silica nanoparticles. J Med Biotechnol 1:1–5

    CAS  Google Scholar 

  66. 66.

    Shao F, Liu L, Fan K (2012) Ibuprofen loaded porous calcium phosphate nanospheres for skeletal drug delivery system. J Mater Sci 47:1054–1058

    CAS  Article  Google Scholar 

  67. 67.

    Murugan R, Ramakrishna S (2006) Designing biological apatite suitable for neomycin delivery. J Mater Sci 41:4343–4347

    CAS  Article  Google Scholar 

  68. 68.

    Le Huec JC, Schaeverbeke T, Clement D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16:113–118

    Article  Google Scholar 

  69. 69.

    Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A (2009) Interaction of Sr-doped hydroxy apatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res—Part A 89:594–600

    CAS  Article  Google Scholar 

  70. 70.

    Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103:1666–1674

    CAS  Article  Google Scholar 

  71. 71.

    Legeros RZ (1993) Biodegradation and bioresorption phosphate ceramics of calcium. Clin Mater 14:65–88

    CAS  Article  Google Scholar 

  72. 72.

    Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G (2007) Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater 3:961–969

    CAS  Article  Google Scholar 

  73. 73.

    Norhidayu D, Sopyan I, Ramesh S (2008) Development of zinc doped hydroxyapatite for bone implant applications. In: Proceedings of the International Conference on Construction and Building Technology 2008:257–270

  74. 74.

    Bianco A, Cacciotti I, Lombardi M, Montanaro L (2009) Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull 44:345–354

    CAS  Article  Google Scholar 

  75. 75.

    Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G (2006) Biomimetic Mg- and Mg2CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc 26:2593–2601

    CAS  Article  Google Scholar 

  76. 76.

    Kumta PN, Sfeir C, Lee DH, Olton D, Choi D (2005) Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomater 1:65–83

    Article  Google Scholar 

  77. 77.

    Yasukawa A, Ouchi S, Kandori K, Ishikawa T (1996) Preparation and characterization of magnesium-calcium hydroxyapatites. J Muter Chem 6:1401–1405

    CAS  Article  Google Scholar 

  78. 78.

    Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1996) Rietveld structure refinements of calcium hydroxylapatite containing magnesium. Acta Crystallogr Sect B: Struct Sci 52:87–92

    Article  Google Scholar 

  79. 79.

    Gibson IR, Bonfield W (2002) Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci: Mater Med 13:685–693

    CAS  Google Scholar 

  80. 80.

    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: From synthesis to in vivo behaviour. J Mater Sci: Mater Med 19:239–247

    CAS  Google Scholar 

  81. 81.

    Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654

    CAS  Article  Google Scholar 

  82. 82.

    Zyman Z, Tkachenko M, Epple M, Polyakov M, Naboka M (2006) Magnesium-substituted hydroxyapatite ceramics. Mater Werkst 37:474–477

    CAS  Article  Google Scholar 

  83. 83.

    Fadeev IV, Shvorneva LI, Barinov SM, Orlovskii VP (2003) Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg Mater 39:947–950

    CAS  Article  Google Scholar 

  84. 84.

    Bigi A, Boanini E, Capuccini C, Gazzano M (2007) Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta 360:1009–1016

    CAS  Article  Google Scholar 

  85. 85.

    Verberckmoes SC, Behets GJ, Oste L, Bervoets AR, Lamberts LV, Drakopoulos M, Somogyi A, Cool P, Dorriné W, De Broe ME et al. (2004) Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif Tissue Int 75:405–415

    CAS  Article  Google Scholar 

  86. 86.

    Shen Y, Liu J, Lin K, Zhang W (2012) Synthesis of strontium substituted hydroxyapatite whiskers used as bioactive and mechanical reinforcement material. Mater Lett 70:76–79

    CAS  Article  Google Scholar 

  87. 87.

    Kim HW, Koh YH, Kong YM, Kang JG, Kim HE (2004) Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J Mater Sci: Mater Med 15:1129–1134

    CAS  Google Scholar 

  88. 88.

    Kavitha M, Subramanian R, Narayanan R, Udhayabanu V (2014) Solution combustion synthesis and characterization of strontium substituted hydroxyapatite nanocrystals. Powder Technol 253:129–137

    CAS  Article  Google Scholar 

  89. 89.

    Ovesen J, Moller-Madsen B, Thomsen JS, Danscher G, Mosekilde L (2001) The positive effects of zinc on skeletal strength in growing rats. Bone 29:565–570

    CAS  Article  Google Scholar 

  90. 90.

    Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64:163–172

    CAS  Article  Google Scholar 

  91. 91.

    Yamaguchi M (1998) Role of Zinc in Bone Formation and Bone Resorption. J Trace Elem Exp Med 11:119–135

    CAS  Article  Google Scholar 

  92. 92.

    Miao S, Cheng K, Weng W, Du P, Shen G, Han G, Yan W, Zhang S (2008) Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability. Acta Biomater 4:441–446

    CAS  Article  Google Scholar 

  93. 93.

    Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149

    CAS  Article  Google Scholar 

  94. 94.

    Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1997) Isomorphous substitutions in β-tricalcium phosphate: The different effects of zinc and strontium. J Inorg Biochem 66:259–265

    CAS  Article  Google Scholar 

  95. 95.

    Kaygili O, Tatar C (2012) The investigation of some physical properties and microstructure of Zn-doped hydroxyapatite bioceramics prepared by sol-gel method. J Sol–Gel Sci Technol 61:296–309

    CAS  Article  Google Scholar 

  96. 96.

    Jallot E, Nedelec JM, Grimault AS, Chassot E, Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D (2005) STEM and EDXS characterisation of physico-chemical reactions at the periphery of sol-gel derived Zn-substituted hydroxyapatites during interactions with biological fluids. Colloids Surf B: Biointerfaces 42:205–210

    CAS  Article  Google Scholar 

  97. 97.

    Yingguang L, Zhuoru Y, Jiang C (2007) Preparation, characterization and antibacterial property of cerium substituted hydroxyapatite nanoparticles. J Rare Earths 25:452–456

    Article  Google Scholar 

  98. 98.

    Feng Z, Liao Y, Ye M (2005) Synthesis and structure of cerium-substituted hydroxyapatite. J Mater Sci: Mater Med 16:417–421

    CAS  Google Scholar 

  99. 99.

    Reardon PJT, Huang J, Tang J (2013) Morphology controlled porous calcium phosphate nanoplates and nanorods with enhanced protein loading and release functionality. Adv Healthc Mater 2:682–686

    CAS  Article  Google Scholar 

  100. 100.

    Medvecký Ľ, Štulajterová R, Parilák Ľ, Trpčevská J, Ďurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A: Physicochem Eng Asp 281:221–229

    Article  CAS  Google Scholar 

  101. 101.

    Suitch PR (1985) The structural location and role of Mn2+ partially substituted for Ca2+ in fluorapatite. Acta Cryst 41:173–179

    Article  Google Scholar 

  102. 102.

    Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, Burghaus O, Reinen D (2003) Manganese in precipitated hydroxyapatites. Eur J Inorg Chem 2003:1445–1451

    Article  Google Scholar 

  103. 103.

    Mayer I, Schleich Y, Gdalya S, Reinen D, Burghaus O, Popov I, Cuisinier FJG (2006) Phase relations between β-tricalcium phosphate and hydroxyapatite with manganese(II): structural and spectroscopic properties. Eur J Inorg Chem 7:1460–1465

    Article  CAS  Google Scholar 

  104. 104.

    Li Y, TeckNam C, PingOoi C (2009) Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J Phys: Conf Ser 187:012024

    Google Scholar 

  105. 105.

    Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P (2005) Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 26:2381–2389

    CAS  Article  Google Scholar 

  106. 106.

    LeGeros R (1965) Effect of carbonate on lattice parameters of apatite. Nature 835–837

  107. 107.

    Lacout J, Nounah A, Ferhat M (1998) Strontium-cadmium substitution in hydroxyl and fluorapatites. Ann Chem Sci Mater 23:57–60

    CAS  Article  Google Scholar 

  108. 108.

    Shimoda S, Aoba T, Moreno EC, Miake Y (1990) Effect of solution composition on morphological and structural features of carbonated calcium apatites. J Dent Res 69:1731–1740

    CAS  Article  Google Scholar 

  109. 109.

    Murugan R, Ramakrishna S (2006) Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater 2:201–206

    CAS  Article  Google Scholar 

  110. 110.

    Ślósarczyk A, Paszkiewicz Z, Paluszkiewicz C (2005) FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct 744–747:657–661

    Article  CAS  Google Scholar 

  111. 111.

    Qu H, Wei M (2006) The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater 2:113–119

    Article  Google Scholar 

  112. 112.

    Ten Cate JM, Featherstone JDB (1991) Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med 2:283–296

    Article  Google Scholar 

  113. 113.

    Legeros RZ, Silverstone LM, Daculsi G, Kerebel LM (1983) In vitro caries-like lesion formation in F-containing tooth enamel. J Dent Res 62:138–144

    CAS  Article  Google Scholar 

  114. 114.

    Qu H, Wei M (2005) Synthesis and characterization of fluorine-containing hydroxyapatite by a pH-cycling method. J Mater Sci: Mater Med 16:129–133

    Google Scholar 

  115. 115.

    Chen Y, Miao X (2005) Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials 26:1205–1210

    CAS  Article  Google Scholar 

  116. 116.

    Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem 15:1509–1516

    CAS  Article  Google Scholar 

  117. 117.

    Tang XL, Xiao XF, Liu RF (2005) Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett 59:3841–3846

    CAS  Article  Google Scholar 

  118. 118.

    Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37:1219–1229

    CAS  Article  Google Scholar 

  119. 119.

    Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24:4609–4620

    CAS  Article  Google Scholar 

  120. 120.

    Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G (2008) Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C 28:179–187

    CAS  Article  Google Scholar 

  121. 121.

    Porter AE, Best SM, William B (2003) Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. J Biomed Mater Res 68A:133–141

    Article  CAS  Google Scholar 

  122. 122.

    Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N,WB (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79:723–730

    CAS  Article  Google Scholar 

  123. 123.

    Pietak AM, Reid JW, Stott MJ, Sayer M (2007) Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28:4023–4032

    CAS  Article  Google Scholar 

  124. 124.

    Bang LT, Ishikawa K, Othman R (2011) Effect of silicon and heat-treatment temperature on the morphology and mechanical properties of silicon-substituted hydroxyapatite. Ceram Int 37:3637–3642

    CAS  Article  Google Scholar 

  125. 125.

    Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials 24:1389–1398

    Article  Google Scholar 

  126. 126.

    Gasquères G, Bonhomme C, Maquet J, Babonneau F, Hayakawa S, Kanaya T, Osaka A (2008) Revisiting silicate substituted hydroxyapatite by solid-state NMR. Magn Reson Chem 46:342–346

    Article  CAS  Google Scholar 

  127. 127.

    Lilja M, Lindahl C, Xia W, Engqvist H, Strømme M (2013) The effect of Si-doping on the release of antibiotic from hydroxyapatite coatings. J Biomater Nanobiotechnol 04:237–241

    CAS  Article  Google Scholar 

  128. 128.

    Markovich D (2001) Physiological roles and regulation of mammalian sulfate transporters. Physiol Rev 81:1499–1533

    CAS  Article  Google Scholar 

  129. 129.

    Alshemary AZ, Goh YF, Akram M, Razali IR, Abdul Kadir MR, Hussain R (2013) Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater Res Bull 48:2106–2110

    CAS  Article  Google Scholar 

  130. 130.

    Toyama T, Kameda S (2013) Synthesis of sulfate-ion-substituted hydroxyapatite from amorphous calcium phosphate. Bioceram Dev Appl 3:10–12

    Article  Google Scholar 

  131. 131.

    Lin K, Qu H, Zhou Y, Chen F, Zhu Y, Chang J, Zhou Y (2011) Biomimetic hydroxyapatite porous microspheres with co-substituted essential trace elements: surfactant-free hydrothermal synthesis, enhanced degradation and drug release. J Mater Chem 21:16558–16565

    CAS  Article  Google Scholar 

  132. 132.

    Imrie FE, Aina V, Lusvardi G, Malavasi G, Gibson IR, Cerrato G, Annaz B (2013) Synthesis and characterisation of strontium and magnesium co-substituted biphasic calcium phosphates. Key Eng Mater 529–530:88–93

    Google Scholar 

  133. 133.

    Nsar S, Hassine A, Bouzouita K (2013) Sintering and mechanical properties of magnesium and fluorine co-substituted hydroxyapatites. J Biomater Nanobiotechnol 04:1–11

    CAS  Article  Google Scholar 

  134. 134.

    Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L (2014) Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surf A: Physicochem Eng Asp 451:172–180

    CAS  Article  Google Scholar 

  135. 135.

    Zhang N, Zhai D, Chen L, Zou Z, Lin K, Chang J (2014) Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater Sci Eng C 37:286–291

    CAS  Article  Google Scholar 

  136. 136.

    Manafi S, Joughehdoust S, Badiee SH (2009) Effect of pH on morphology, size and composition of calcium phosphate phase obtained in wet chemical. Int J Nanomanuf 5:169–178

    Article  Google Scholar 

  137. 137.

    Bezzi G, Celotti G, Landi E, La Torretta TMG, Sopyan I, Tampieri A (2003) A novel sol-gel technique for hydroxyapatite preparation. Mater Chem Phys 78:816–824

    CAS  Article  Google Scholar 

  138. 138.

    Zhu R, Yu R, Yao J, Wang D, Ke J (2008) Morphology control of hydroxyapatite through hydrothermal process. J Alloy Compd 457:555–559

    CAS  Article  Google Scholar 

  139. 139.

    Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P (2009) Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater Lett 63:543–546

    CAS  Article  Google Scholar 

  140. 140.

    Mishra VK, Srivastava SK, Asthana BP, Kumar D (2012) Structural and spectroscopic studies of hydroxyapatite nanorods Formed via microwave-assisted synthesis route. J Am Ceram Soc 95:2709–2715

    CAS  Article  Google Scholar 

  141. 141.

    Sl PM, Ashok M, Balasubramanian T, Riyasdeen A, Akbarsha MA (2009) Synthesis and characterization of nano-hydroxyapatite at ambient temperature using cationic surfactant. Mater Lett 63:2123–2125

    Article  CAS  Google Scholar 

  142. 142.

    Hong Y, Fan H, Li B, Guo B, Liu M, Zhang X (2010) Fabrication, biological effects, and medical applications of calcium phosphate nanoceramics. Mater Sci Eng R: Rep. 70:225–242

    Article  CAS  Google Scholar 

  143. 143.

    Bigi A, Boanini E, Rubini K (2004) Hydroxyapatite gels and nanocrystals prepared through a sol-gel process. J Solid State Chem 177:3092–3098

    CAS  Article  Google Scholar 

  144. 144.

    Li B, Chen X, Guo B, Wang X, Fan H, Zhang X (2009) Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater 5:134–143

    CAS  Article  Google Scholar 

  145. 145.

    Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377

    CAS  Article  Google Scholar 

  146. 146.

    Coreño AJ, Coreño AO, Cruz RJJ, Rodríguez CC (2005) Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Optical Mater 27:1281–1285

    Article  CAS  Google Scholar 

  147. 147.

    Cao LY, Zhang CB, Huang JF (2005) Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation. Ceram Int 31:1041–1044

    CAS  Article  Google Scholar 

  148. 148.

    Qi Y, Shen J, Jiang Q, Bo J, Chen J, Zhang X (2015) The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method. Adv Powder Technol 26:1041–1046

    CAS  Article  Google Scholar 

  149. 149.

    Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744

    CAS  Article  Google Scholar 

  150. 150.

    Farzadi A, Solati-Hashjin M, Bakhshi F, Aminian A (2011) Synthesis and characterization of hydroxyapatite/β-tricalcium phosphate nanocomposites using microwave irradiation. Ceram Int 37:65–71

    CAS  Article  Google Scholar 

  151. 151.

    Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    CAS  Article  Google Scholar 

  152. 152.

    Liu J, Ye X, Wang H, Zhu M, Wang B, Yan H (2003) The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int 29:629–633

    CAS  Article  Google Scholar 

  153. 153.

    Sadat-shojai M, Khorasani M, Dinpanah-khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    CAS  Article  Google Scholar 

  154. 154.

    Yoshimura MBK (2008) Hydrothermal processing of materials: past, present and future. J Mater Sci 43:2085–2103

    CAS  Article  Google Scholar 

  155. 155.

    Chandanshive BB, Rai P, Rossi ALR, Ersen O, Khushalani D (2013) Synthesis of hydroxyapatite for biomedical applications. Mater Sci Eng C 33:2981–2986

    CAS  Article  Google Scholar 

  156. 156.

    Chen F, Zhu YJ, Wang KW, Zhao KLe (2011) Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm 13:1858–1863

    CAS  Article  Google Scholar 

  157. 157.

    Lee DK, Park JY, Kim MR, Jang DJ (2011) Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms. CrystEngComm 13:5455–5459

    CAS  Article  Google Scholar 

  158. 158.

    Lester E, Tang SVY, Khlobystov A, Rose VL, Buttery L, Roberts CJ (2013) Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis. CrystEngComm 15:3256–3260

    CAS  Article  Google Scholar 

  159. 159.

    Ma MG, Zhu YJ, Chang J (2008) Solvothermal preparation of hydroxyapatite microtubes in water/N,N-dimethylformamide mixed solvents. Mater Lett 62:1642–1645

    CAS  Article  Google Scholar 

  160. 160.

    Yan L, Li Y, Deng Z, Zhuang J, Sun X (2001) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods. Int J Inorg Mater 3:633–637

    CAS  Article  Google Scholar 

  161. 161.

    Sadat-Shojai M, Atai M, Nodehi A (2011) Design of experiments (DOE) for the optimization of hydrothermal synthesis of hydroxyapatite nanoparticles. J Braz Chem Soc 22:571–582

    CAS  Article  Google Scholar 

  162. 162.

    Zhu Y, Xu L, Liu C, Zhang C, Wu N (2018) Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method. AIP Adv 8:1–11

    Google Scholar 

  163. 163.

    Bricha M, Belmamouni Y, Essassi EM, Ferreira JMF, Mabrouk K, El (2012) Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanopowders. J Nanosci Nanotechnol 12:8042–8049

    CAS  Article  Google Scholar 

  164. 164.

    Giang LT, Hoai TT, Binh BTT, Nga NK, Tuan PNM, Huy TQ (2017) Hydrothermal synthesis of hydroxyapatite nanorods for rapid formation of bone-like mineralization. J Electron Mater 46:5064–5072

    Article  CAS  Google Scholar 

  165. 165.

    Pan HB, Li ZY, Lam WM, Wong JC, Darvell BW, Luk KDK, Lu WW (2009) Solubility of strontium-substituted apatite by solid titration. Acta Biomater 5:1678–1685

    CAS  Article  Google Scholar 

  166. 166.

    Lin K, Liu P, Wei L, Zou Z, Zhang W, Qian Y, Shen Y, Chang J (2013) Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem Eng J 222:49–59

    CAS  Article  Google Scholar 

  167. 167.

    Earl JS, Wood DJ, Milne SJ (2006) Hydrothermal synthesis of hydroxyapatite. J Phys 26:268–271

    Google Scholar 

  168. 168.

    Lak A, Mazloumi M, Mohajerani MS, Zanganeh S, Shayegh MR, Kajbafvala A, Arami H, Sadrnezhaad SK (2008) Rapid formation of mono-dispersed hydroxyapatite nanorods with narrow-size distribution via microwave irradiation. J Am Ceram Soc 91:3580–3584

    CAS  Article  Google Scholar 

  169. 169.

    Mishra VK, Rai SB, Asthana BP, Parkash O, Kumar D (2014) Effect of annealing on nanoparticles of hydroxyapatite synthesized via microwave irradiation: structural and spectroscopic studies. Ceram Int 40:11319–11328

    CAS  Article  Google Scholar 

  170. 170.

    Kumar AR, Kalainathan S, Saral AM (2010) Microwave assisted synthesis of hydroxyapatite nano strips. Cryst Res Technol 45:776–778

    Article  CAS  Google Scholar 

  171. 171.

    Liu J, Li K, Wang H, Zhu M, Yan H (2004) Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett 396:429–432

    CAS  Article  Google Scholar 

  172. 172.

    Iqbal N, Rafiq M, Kadir A, Ahmad N, Nik N, Humaimi N, Raman M, Kamarul T (2012) Rapid microwave assisted synthesis and characterization of nanosized silver-doped hydroxyapatite with antibacterial properties. Mater Lett 89:118–122

    CAS  Article  Google Scholar 

  173. 173.

    Wang YZ, Fu Y (2011) Microwave-hydrothermal synthesis and characterization of hydroxyapatite nanocrystallites. Mater Lett 65:3388–3390

    CAS  Article  Google Scholar 

  174. 174.

    Siddharthan A, Seshadri SK, Kumar TSS (2006) Influence of microwave power on nanosized hydroxyapatite particles. Scr Mater 55:175–178

    CAS  Article  Google Scholar 

  175. 175.

    Silva CC, Graça MPF, Valente MA, Góes JC, Sombra ASB (2006) Microwave preparation, structure and electrical properties of calcium–sodium–phosphate biosystem. J Non-Cryst Solids 352:3512–3517

    CAS  Article  Google Scholar 

  176. 176.

    Vani R, Raja SB, Sridevi TS, Savithri K, Devaraj SN, Girija EK, Thamizhavel A, Kalkura SN (2011) Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection. Nanotechnology 22:285701

    CAS  Article  Google Scholar 

  177. 177.

    Qi C, Zhu YJ, Lu BQ, Zhao XY, Zhao J, Chen F, Wu J (2013) Hydroxyapatite hierarchically nanostructured porous hollow microspheres: Rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem Eur J 19:5332–5341

    CAS  Article  Google Scholar 

  178. 178.

    Zhao XY, Zhu YJ, Qi C, Chen F, Lu BQ, Zhao J, Wu J (2013) Hierarchical hollow hydroxyapatite microspheres: Microwave-assisted rapid synthesis by using pyridoxal-5′-phosphate as a phosphorus source and application in drug delivery. Chem Asian J 8:1313–1320

    CAS  Article  Google Scholar 

  179. 179.

    Pal R, Maninder S, Mehta S, Shukla S, Singh S (2017) Influence of microwave power and irradiation time on some properties of hydroxyapatite nanopowders. J Sol–Gel Sci Technol 84:332–340

    Article  CAS  Google Scholar 

  180. 180.

    Yang Z, Jiang Y, Wang YJ, Ma LY, Li F (2004) Preparation and thermal stability analysis of hydroxyapatite derived from the precipitation process and microwave irradiation method. Mater Lett 58:3586–3590

    CAS  Article  Google Scholar 

  181. 181.

    Akram M, Alshemary AZ, Goh YF, Wan Ibrahim WA, Lintang HO, Hussain R (2015) Continuous microwave flow synthesis of mesoporous hydroxyapatite. Mater Sci Eng C 56:356–362

    CAS  Article  Google Scholar 

  182. 182.

    Wang KW, Zhu YJ, Chen F, Cheng GF, Huang YH (2011) Microwave-assisted synthesis of hydroxyapatite hollow microspheres in aqueous solution. Mater Lett 65:2361–2363

    CAS  Article  Google Scholar 

  183. 183.

    Fang Y, Agrawal DK, Roy DM, Roy R (1994) Microwave sintering of hydroxyapatite ceramics. J Mater Res 9:180–187

    CAS  Article  Google Scholar 

  184. 184.

    Cao JM, Feng J, Deng SG, Chang X, Wang J, Liu JS, Lu P, Lu HX, Zheng MB, Zhang F et al. (2005) Microwave-assisted solid-state synthesis of hydroxyapatite nanorods at room temperature. J Mater Sci 40:6311–6313

    CAS  Article  Google Scholar 

  185. 185.

    Wang H, Liu J, Li K, Wang H, Zhu M, Xu H (2005) Self-assembly of hydroxyapatite nanostructures by microwave irradiation. Nanotechnology 16:82–87

    Article  CAS  Google Scholar 

  186. 186.

    Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: Formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574

    CAS  Article  Google Scholar 

  187. 187.

    Wang A, Yin H, Liu D, Wu H, Wada Y, Ren M, Xu Y, Jiang T, Cheng X (2007) Effects of organic modifiers on the size-controlled synthesis of hydroxyapatite nanorods. Appl Surf Sci 253:3311–3316

    CAS  Article  Google Scholar 

  188. 188.

    Arami H, Mohajerani M, Mazloumi M, Khalifehzadeh R, Lak A, Sadrnezhaad SK (2009) Rapid formation of hydroxyapatite nanostrips via microwave irradiation. J Alloy Compd 469:391–394

    CAS  Article  Google Scholar 

  189. 189.

    Wu X, Song X, Li D, Liu J, Zhang P, Chen X (2012) Preparation of mesoporous nano-hydroxyapatite using a surfactant template method for protein delivery. J Bionic Eng 9:224–233

    Article  Google Scholar 

  190. 190.

    Shin Y, Aoki H, Yoshiyama N, Akao M, Higashikata M (1992) Surface properties of hydroxyapatite ceramic as new percutaneous material in skin tissue. J Mater Sci: Mater Med 3:219–221

    CAS  Google Scholar 

  191. 191.

    Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27:2450–2467

    CAS  Article  Google Scholar 

  192. 192.

    Matsunaga K, Murata H, Mizoguchi T, Atsushi Nakahira (2010) Mechanism of incorporation of zinc into hydroxyapatite. Acta Biomater 6:2289–2293

    CAS  Article  Google Scholar 

  193. 193.

    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888

    CAS  Article  Google Scholar 

  194. 194.

    Rodríguez-Ruiz I, Delgado-López JM, Durán-Olivencia MA, Iafisco M, Tampieri A, Colangelo D, Prat M, Gómez-Morales J (2013) PH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir 29:8213–8221

    Article  CAS  Google Scholar 

  195. 195.

    Lin K, Chen L, Liu P, Zou Z, Zhang M, Shen Y, Qiao Y, Liu X, Chang J (2013) Hollow magnetic hydroxyapatite microspheres with hierarchically mesoporous microstructure for pH-responsive drug delivery. CrystEngComm 15:2999–3008

    CAS  Article  Google Scholar 

  196. 196.

    Venkatasubbu GD, Ramasamy S, Avadhani GS, Ramakrishnan V, Kumar J (2013) Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technol 235:437–442

    CAS  Article  Google Scholar 

  197. 197.

    Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh J (2018) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44:6062–6071

    CAS  Article  Google Scholar 

  198. 198.

    Chandra VS, Baskar G, Suganthi RV, Elayaraja K, Joshy MIA, Beaula WS, Mythili R, Venkatraman G, Kalkura SN (2012) Blood compatibility of iron-doped nanosize yydroxyapatite and its drug release. ACS Appl Mater Interfaces 4:1200–1210

    Article  CAS  Google Scholar 

  199. 199.

    Victor SP, Paul W, Jayabalan M, Sharma CP (2014) Supramolecular hydroxyapatite complexes as theranostic near-infrared luminescent drug carriers. CrystEngComm 16:9033–9042

    CAS  Article  Google Scholar 

  200. 200.

    Yang YH, Liu CH, Liang YH, Lin FH, Wu KCW (2013) Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J Mater Chem B 1:2447–2450

    CAS  Article  Google Scholar 

  201. 201.

    Leprêtre S, Chai F, Hornez JC, Vermet G, Neut C, Descamps M, Hildebrand HF, Martel B (2009) Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials 30:6086–6093

    Article  CAS  Google Scholar 

  202. 202.

    Dion A, Langman M, Hall G, Filiaggi M (2005) Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment. Biomaterials 26:7276–7285

    CAS  Article  Google Scholar 

  203. 203.

    Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharm-Drug Res 67:217–223

    CAS  Google Scholar 

  204. 204.

    Balcerzak J, Mucha M (2010) Analysis of model drug release kinetics from complex matrices of polylactide-chitosane. Prog Chem Appl Chitin Derivatives 15:117–126

    Google Scholar 

  205. 205.

    Jarosz M, Pawlik A, Szuwarzyński M, Jaskuła M, Sulka GD (2016) Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism. Colloids Surf B: Biointerfaces 143:447–454

    CAS  Article  Google Scholar 

  206. 206.

    Heimann RB (2013) Structure, properties, and biomedical performance of osteoconductive bioceramic coatings. Surf Coat Technol 233:27–38

    CAS  Article  Google Scholar 

  207. 207.

    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758

    CAS  Article  Google Scholar 

  208. 208.

    Basirun WJ, Nasiri-Tabrizi B, Baradaran S (2018) Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality. Crit Rev Solid State Mater Sci 43:177–212

    CAS  Article  Google Scholar 

  209. 209.

    Jiang F, Wang DP, Ye S, Zhao X (2014) Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release. J Mater Sci: Mater Med 25:391–400

    CAS  Google Scholar 

  210. 210.

    Suganthi RV, Elayaraja K, Joshy MIA, Chandra VS, Girija EK, Kalkura SN (2011) Fibrous growth of strontium substituted hydroxyapatite and its drug release. Mater Sci Eng C 31:593–599

    CAS  Article  Google Scholar 

  211. 211.

    Martínez-vázquez FJ, Cabañas MV, Paris JL, Lozano D, Vallet-regí M (2015) Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater 15:200–209

    Article  CAS  Google Scholar 

  212. 212.

    Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J (2011) Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin. 3 Biotech 1:173–186

    CAS  Article  Google Scholar 

  213. 213.

    Dasgupta S, Banerjee SS, Bandyopadhyay A, Bose S (2010) Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein. Langmuir 26:4958–4964

    CAS  Article  Google Scholar 

  214. 214.

    Qi C, Zhu YJ, Zhao XY, Lu BQ, Tang QL, Zhao J, Chen F (2013) Highly stable amorphous calcium phosphate porous nanospheres: Microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem Eur J 19:981–987

    CAS  Article  Google Scholar 

  215. 215.

    Lai W, Chen C, Ren X, Lee IS, Jiang G, Kong X (2016) Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C 62:166–172

    CAS  Article  Google Scholar 

  216. 216.

    Lelli M, Roveri N, Marzano C, Hoeschele JD, Curci A, Margiotta N, Gandin V, Natile G (2016) Hydroxyapatite nanocrystals as a smart, pH sensitive, delivery system for kiteplatin. Dalton Trans 45:13187–13195

    CAS  Article  Google Scholar 

  217. 217.

    Soriano-Souza CA, Rossi AL, Mavropoulos E, Hausen MA, Tanaka MN, Calasans-Maia MD, Granjeiro JM, Rocha-Leão MHM, Rossi AM (2015) Chlorhexidine-loaded hydroxyapatite microspheres as an antimicrobial delivery system and its effect on in vivo osteo-conductive properties. J Mater Sci: Mater Med 26:166–180

    Google Scholar 

  218. 218.

    Kundu B, Ghosh D, Sinha MK, Sen PS, Balla VK, Das N, Basu D (2013) Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceram Int 39:9557–9566

    CAS  Article  Google Scholar 

Download references

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gurdyal Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, R.P. & Jolly, S.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review. J Sol-Gel Sci Technol 94, 505–530 (2020). https://doi.org/10.1007/s10971-020-05222-1

Download citation

Keywords

  • Hydroxyapatite
  • Ionic substitution
  • Microwave
  • Hydrothermal
  • Bone-tissue engineering
  • Drug delivery