Skip to main content

Effect of intermediate layer and electrode materials on dielectric and flexoelectric properties of double-layer BST films with parallel structure

Abstract

BST films were prepared on Pt/Ti/SiO2/Si substrates by spin-coating method and double-layer BST films with parallel structure were designed in order to improve their dielectric and flexoelectric properties. The best dielectric constant 409 and dielectric loss 0.0104 of the single-layer BST film are obtained at 800 °C annealing temperature. The dielectric constant of double-layer BST films with parallel structure almost doubled to about 800. The maximum of equivalent piezoelectric constant of the single-layer BST film is 107 pC/N, while the values reach 198 and 251 pC/N, respectively, for BST1/ZrO2/BST2 and BST1/MgO/BST2 parallel structure films. The flexoelectric properties of BST1/MgO/BST2 films are better than those of BST1/ZrO2/BST2 films. When LSCO is applied as the inner electrode, the dielectric properties of the double-layer BST films are better than those applied Au electrode. The curves of transverse flexoelectric signal of the former are smoother than those of the latter.

Highlights

  • Double-layer BST film with parallel structure was designed to improve their dielectric and flexoelectric properties.

  • In double-layer BST films with parallel structure, ZrO2 and MgO are used for intermediate layers to separate two electrode layers. The dielectric and flexoelectric properties of BST1/MgO/BST2 films are better than those of BST1/ZrO2/BST2 film.

  • When LSCO is applied as the internal electrode, the dielectric and flexoelectric properties of the double-layer BST films are better than those applied Au electrode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Friederich A, Kohler C, Nikfalazar M, Wiens A, Sazegar M, Jakoby R, Bauer W, Binder JR (2014) Microstructure and microwave properties of inkjet printed barium strontium titanate thick-films for tunable microwave devices. J Eur Ceram Soc 34(12):2925–2932. https://doi.org/10.1016/j.jeurceramsoc.2014.04.007

    CAS  Article  Google Scholar 

  2. 2.

    Garten LM, Lam P, Harris D, Maria JP, Trolier-McKinstry S (2014) Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics. J Appl Phys 116 (4). https://doi.org/10.1063/1.4891717

    Article  Google Scholar 

  3. 3.

    Cure D, Weller T, Miranda FA (2014) Study of a flexible low profile tunable dipole antenna using barium strontium titanate varactors, vol 62. IEEE Antennas and Propagation Society International Symposium, p 1185–1193. https://doi.org/10.1109/TAP.2013.2294191

    Article  Google Scholar 

  4. 4.

    Wu M, Li X, Yu S, Sun Y, Dong H (2019) Dielectric properties of the bulk and interfacial layers in ferroelectric BaZr0.2Ti0.8O3 thin films. Ceram Int 45(2019):10917–10923. https://doi.org/10.1016/j.ceramint.2019.02.171

    CAS  Article  Google Scholar 

  5. 5.

    Wu M, Li X, Dong H, Yu S, Li L (2019) High-performance flexible dielectric tunable BTS thin films prepared on copper foils. Ceram Int 45(13):16270–16274. https://doi.org/10.1016/j.ceramint.2019.05.150

    CAS  Article  Google Scholar 

  6. 6.

    Lu X, Zhang L, Tong Y, Cheng ZY (2019) BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos Part B 168:34–43. https://doi.org/10.1016/j.compositesb.2018.12.059

    CAS  Article  Google Scholar 

  7. 7.

    Kumari A, Dasgupta Ghosh B (2017) Preparation and dielectric properties of polyimide/Ba0.7Sr0.3TiO3 nanocomposite film. Mater Today 4(9):10479–10483. https://doi.org/10.1016/j.matpr.2017.06.404

    Article  Google Scholar 

  8. 8.

    Gupta R, Gupta V, Tomar M (2019) Structural and dielectric properties of PLD grown BST thin films. Vacuum 159:69–75. https://doi.org/10.1016/j.vacuum.2018.10.010

    CAS  Article  Google Scholar 

  9. 9.

    Liu W, Liao J, Wang S, Huang X, Zhang Y (2018) Significant reduction of dielectric loss of Ba0.51Sr0.34TiO3 film modified by Y/Mn alternate doping and preheating. Ceram Int 44(13):15653–15659. https://doi.org/10.1016/j.ceramint.2018.05.235

    CAS  Article  Google Scholar 

  10. 10.

    Wang H, Dong Y, Wang Z (2018) High tunable dielectric properties of Zn and Mg alternately doped Ba0.6Sr0.4TiO3 film varactors. J Alloy Compd 745:651–658. https://doi.org/10.1016/j.jallcom.2018.02.077

    CAS  Article  Google Scholar 

  11. 11.

    Fan Y, Yu S, Sun R, Li L, Yin Y, Wong K-W, Du RJASS (2010) Microstructure and electrical properties of Mn-doped barium strontium titanate thin films prepared on copper foils. Appl Surf Sci 256(22):6531–6535. https://doi.org/10.1016/j.apsusc.2010.04.042

    CAS  Article  Google Scholar 

  12. 12.

    Hong X, Shao T, Wang T, Liu Y, Zhang D, Kuang Y, Feng J (2016) Effect of Mn doping on the structural and electrical properties of periodic Ba0.9Sr0.1TiO3 multilayers Appl Surf Sci 360:666–670. https://doi.org/10.1016/j.apsusc.2015.11.039

    CAS  Article  Google Scholar 

  13. 13.

    Wang SZ, Liao JX, Hu YM, Gong F, Xu ZQ, Wu MQ (2017) Structures and dielectric performances of Mn/Y alternately doped BST films prepared by a novel preheating process. Mater Chem Phys 193:50–56. https://doi.org/10.1016/j.matchemphys.2017.01.076

    CAS  Article  Google Scholar 

  14. 14.

    Chen X, Zhang Y, Xie B, Huang K, Wang Z, Yu P (2019) Thickness-dependence of growth rate, dielectric response, and capacitance properties in Ba0.67Sr0.33TiO3/LaNiO3 hetero-structure thin films for film capacitor applications. Thin Solid Films 685:269–274. https://doi.org/10.1016/j.tsf.2019.06.021

    CAS  Article  Google Scholar 

  15. 15.

    Dong H, Jian J, Li H, Jin D, Chen J, Cheng J (2017) Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. J Alloy Compd 725:54–59. https://doi.org/10.1016/j.jallcom.2017.07.139

    CAS  Article  Google Scholar 

  16. 16.

    Zhao L, Xu R, Wei Y, Han X, Zhai C, Zhang Z, Qi X, Cui B, Jones JL (2019) Giant dielectric phenomenon of Ba0.5Sr0.5TiO3/CaCu3Ti4O12 multilayers due to interfacial polarization for capacitor applications. J Eur Ceram Soc 39(4):1116–1121. https://doi.org/10.1016/j.jeurceramsoc.2018.11.039

    CAS  Article  Google Scholar 

  17. 17.

    Li B, Wang C, Dou G, Wang Z, Fei W (2017) Crystallized Bi0.9La0.1Fe0.95Mn0.05O3/Ba0.7Sr0.3Ti0.95Co0.05O3 bilayer thin films with enhanced multiferroic properties. Appl Surf Sci 404:162–167. https://doi.org/10.1016/j.apsusc.2017.01.186

    CAS  Article  Google Scholar 

  18. 18.

    Mao Y, Ai S, Xiang X, Chen C (2016) Theory for dielectrics considering the direct and converse flexoelectric effects and its finite element implementation. Appl Math Modell 40(15–16):7115–7137. https://doi.org/10.1016/j.apm.2015.12.042

    Article  Google Scholar 

  19. 19.

    Bhaskar UK, Banerjee N, Abdollahi A, Wang Z, Schlom DG, Rijnders G, Catalan G (2016) A flexoelectric microelectromechanical system on silicon Nat Nanotechnol 11(3):263. https://doi.org/10.1038/NNANO.2015.260

    CAS  Article  Google Scholar 

  20. 20.

    Jiang X, Huang W, Zhang S (2013) Flexoelectric nano-generator: materials, structures and devices Nano Energy 2(6):1079–1092. https://doi.org/10.1016/j.nanoen.2013.09.001

    CAS  Article  Google Scholar 

  21. 21.

    Narvaez J, Vasquez-Sancho F, Catalan G (2016) Enhanced flexoelectric-like response in oxide semiconductors. Nature 538(7624):219. https://doi.org/10.1038/nature19761

    CAS  Article  Google Scholar 

  22. 22.

    Zubko P, Catalan G, Tagantsev AK (2013) Flexoelectric effect in solids. Rev Mater Res 43. https://doi.org/10.1146/annurev-matsci-071312-121634

    CAS  Article  Google Scholar 

  23. 23.

    Ma W, Cross LE (2001) Observation of the flexoelectric effect in relaxor Pb (Mg1/3Nb2/3)O3 ceramics Appl Phys Lett 78(19):2920–2921. https://doi.org/10.1063/1.1356444

    CAS  Article  Google Scholar 

  24. 24.

    Ma W (2010) Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids. Phys Status Solidi 247(1):213–218. https://doi.org/10.1002/pssb.200945394

    CAS  Article  Google Scholar 

  25. 25.

    Chen L-F, Ong C, Neo C, Varadan V, Varadan VK (2004) Microwave electronics: measurement and materials characterization. John Wiley & Sons, Hoboken

  26. 26.

    Cross LE (2006) Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci 41(1):53–63. https://doi.org/10.1007/s10853-005-5916-6

    CAS  Article  Google Scholar 

  27. 27.

    Hana P (2007) Study of flexoelectric phenomenon from direct and from inverse flexoelectric behavior of PMNT ceramic. Ferroelectrics 351(1):196–203. https://doi.org/10.1080/00150190701354281

    CAS  Article  Google Scholar 

  28. 28.

    Wang Q-M, Cross LE (1998) Performance analysis of piezoelectric cantilever bending actuators Ferroelectrics 215(1):187–213. https://doi.org/10.1080/00150199808229562

    CAS  Article  Google Scholar 

  29. 29.

    Huang W, Kim K, Zhang S, Yuan FG, Jiang X (2011) Scaling effect of flexoelectric (Ba, Sr) TiO3 microcantilevers Status Solidi-Rapid Res Lett 5(9):350–352. https://doi.org/10.1002/pssr.201105326

    CAS  Article  Google Scholar 

  30. 30.

    Schmidt T, Mennig M, Schmidt H (2007) New method for the preparation and stabilization of nanoparticulate t‐ZrO2 by a combined sol–gel and solvothermal process J Am Ceram Soc 90(5):1401–1405. https://doi.org/10.1111/j.1551-2916.2007.01567.x

    CAS  Article  Google Scholar 

  31. 31.

    Chatterjee A, Fabian DJ (1969) Lattice and grain-boundary diffusion of gold in copper. Acta Metall 17(9):1141–1144. https://doi.org/10.1016/0001-6160(69)90090-X

    CAS  Article  Google Scholar 

  32. 32.

    Shewmon P (2016) Diffusion in solids. Springer, New York

    Book  Google Scholar 

  33. 33.

    Neumann G, Tuijn C (2011) Self-diffusion and impurity diffusion in pure metals: handbook of experimental data. Elsevier, Oxford

  34. 34.

    Bhatt HD, Vedula R, Desu SB, Fralick GC (1999) La(1−x)SrxCoO3 for thin film thermocouple applications. Thin Solid Films 350:249–257. https://doi.org/10.1016/s0040-6090(98)01442-4

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Jiangsu province (Grant no. BK2009718), National Natural Science Foundation of China (Grant no. 11272138), and National Center for International Research on Structural Health Management of Critical Components.

Funding

This study was funded by Natural Science Foundation of Jiangsu province (Grant no. BK2009718), National Natural Science Foundation of China (Grant no. 11272138), and National Center for International Research on Structural Health Management of Critical Components.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Liu, J., Jiang, N. et al. Effect of intermediate layer and electrode materials on dielectric and flexoelectric properties of double-layer BST films with parallel structure. J Sol-Gel Sci Technol 93, 244–250 (2020). https://doi.org/10.1007/s10971-019-05201-1

Download citation

Keywords

  • Flexoelectric properties
  • Dielectric properties
  • Sol–gel method
  • Intermediate layer
  • Electrode