Structural and optical properties of macroporous Ag@TiO2 thin films prepared by a facile one-step sol–gel method


A principle of obtaining macroporous Ag@TiO2 thin films by a template-free method in the frame work of sol–gel is developed. The macroporous structure is constructed by photo polymerization induced phase separation (PIPS) method, and the reduction of Ag+ to Ag0 is induced by ultraviolet irradiation at the same time. The achieved macroporous Ag@TiO2 films are well interconnected and crack free with an average pore size in the range 350–440 nm. Increasing Ag concentration results in the enhancement of extinction coefficient and reduction of refractive index, which are found to be consistent with absorbance and transmittance observations. In addition, Ag concentration causes red shift in absorbance which in turn decreases the band gap energy. These results may add important insight into developing high-performance materials for visible light activities.


  • A facile one-step sol–gel method is used to prepared macroporous Ag modified TiO2 thin films.

  • Increasing Ag concentration results in the enhancement of extinction coefficient and reduction of refractive index.

  • Enhancement of Ag concentration produced red shift in absorbance which in turn decreases the band gap energy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    San Vicente G, Morales A, Gutierrez MT (2001) Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon. Thin Solid Films 391:133–137.

    CAS  Article  Google Scholar 

  2. 2.

    Yao J, Bai Y, Chen N, Takahashi M, Yoko T (2011) Sol-gel preparation, characterization, and photocatalytic activity of macroporous TiO2 thin films. J Am Ceram Soc 94:1191–1197.

    CAS  Article  Google Scholar 

  3. 3.

    Wang K et al. (2017) A facile one-step method to fabricate multi-scaled solar selective absorber with nano-composite and controllable micro-porous texture. Sol Energy Mater Sol Cells 163:105–112.

    CAS  Article  Google Scholar 

  4. 4.

    Yu B et al. (2011) Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:1–9.

    CAS  Article  Google Scholar 

  5. 5.

    Fu X, Zhang G, Wu T, Wang S (2013) Multifunctional gold-loaded TiO2 thin film: photocatalyst and recyclable SERS substrate. Can J Chem 91:1112–1116.

    CAS  Article  Google Scholar 

  6. 6.

    Vamathevan V et al. (2002) Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J Photochem Photobio 148:233–245.

    CAS  Article  Google Scholar 

  7. 7.

    Li Q et al. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602.

    CAS  Article  Google Scholar 

  8. 8.

    Khan M, Gul SR, Li J, Cao W (2015) Photocatalytic degradation of methylene blue by hydrothermally prepared Ag-doped TiO2 under visible light irradiations. J Miner Met Mater Soc 67:2104–2107.

    CAS  Article  Google Scholar 

  9. 9.

    Sharma H, Singhal R, Siva Kumar VV, Asokan K (2016) Structural, optical and electronic properties of Ag–TiO2 nanocomposite thin film. Appl Phys A 122:1010(1–9).

    CAS  Article  Google Scholar 

  10. 10.

    Ivanova T, Harizanova A, Koutzarova T, Vertruyen B (2013) Optical and structural characterization of TiO2 films doped with silver nanoparticles obtained by sol-gel method. Opt Mater 36:207–213.

    CAS  Article  Google Scholar 

  11. 11.

    Ismail AA, Bahnemann DW (2011) Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J Phys Chem C 115:5784–5791.

    CAS  Article  Google Scholar 

  12. 12.

    Fateh R, Ismail AA, Dillert R, Bahnemann DW (2011) Highly active crystalline mesoporous TiO2 films coated onto polycarbonate substrates for self-cleaning applications. J Phys Chem C 115:10405–10411.

    CAS  Article  Google Scholar 

  13. 13.

    Bu SJ et al. (2005) Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J Eur Ceram Soc 25:673–679.

    CAS  Article  Google Scholar 

  14. 14.

    Kajihara K et al. (1998) Preparation of macro-porous titania films by a sol–gel dip-coating method from the system containing poly(ethylene glycol). J Am Ceram Soc 81:2670–76.

    CAS  Article  Google Scholar 

  15. 15.

    Mon R, Takahashi M, Yoko T (2004) 2D spinodal phase-separated TiO2 films prepared by sol-gel process and photocatalytic activity. Mater Res Bull 39:2137–2143.

    CAS  Article  Google Scholar 

  16. 16.

    Ismail AA (2012) Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater 149:69–75.

    CAS  Article  Google Scholar 

  17. 17.

    Liu T et al. (2015) A general method to diverse silver/mesoporous-metal-oxide nanocomposites with plasmon-enhanced photocatalytic activity. Appl Catal B 165:378–388.

    CAS  Article  Google Scholar 

  18. 18.

    Ginter J et al. (2016) Tuning of the photocatalytic activity of thin titanium dioxide coatings by highly ordered structure and silver nanoparticles. Microporous Mesoporous Mater 225:580–589.

    CAS  Article  Google Scholar 

  19. 19.

    Yao J, Wang F, Takahashi M, Yoko T (2009) Surfactant-free synthesis of macroporous TiO2 films by a photo polymerization-induced phase-separation method. J Phys Chem C 113:15621–15628.

    CAS  Article  Google Scholar 

  20. 20.

    Dubinsky S, Petukhova A, Gourevich I, Kumacheva E (2010) A study of polymerization-induced phase separation as a route to produce porous polymer–metal materials. Macromol Rapid Commun 31:1635–1640.

    CAS  Article  Google Scholar 

  21. 21.

    Ansari SA, Khan MM, Ansari MO, Cho MH (2015) Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Sol Energy Mater Sol Cells 141:162–170.

    CAS  Article  Google Scholar 

  22. 22.

    Su C et al. (2012) Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. Cryst Eng Comm 14:3989–3999.

    CAS  Article  Google Scholar 

  23. 23.

    Dong-Hui et al. (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composited and photocatalytic properties. ACS Appl Mater Interfaces 4:2781–2787.

    CAS  Article  Google Scholar 

  24. 24.

    Chang CC et al. (2008) Photocatalytic properties of porous TiO2/Ag thin films. Thin Solid Films 516:1743–1747.

    CAS  Article  Google Scholar 

  25. 25.

    Yonezawa Y, Kometani N, Sakaue T, Yano A (2005) Photoreduction of silver ions in a colloidal titanium dioxide suspension. J Photochem Photobio 171:1–8.

    CAS  Article  Google Scholar 

  26. 26.

    Gong SH et al. (2011) Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique. Opt Lett 36:4272–4274.

    CAS  Article  Google Scholar 

Download references


The work was financially supported by the National Natural Science Foundation of China (Nos. 51672242 and U1809217) and the Fundamental Research Funds for the Central Universities.

Author information



Corresponding author

Correspondence to Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, S., ul Haq, M., Ma, Y. et al. Structural and optical properties of macroporous Ag@TiO2 thin films prepared by a facile one-step sol–gel method. J Sol-Gel Sci Technol 93, 273–280 (2020).

Download citation


  • Macroporous
  • Sol–gel
  • Ag@TiO2 films
  • PIPS