Skip to main content

Advertisement

Log in

Preparation of MoS2-Graphene-NiO@Ni foam composite by sol coating for (photo)electrocatalytic hydrogen evolution reaction

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical, and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ni foam was first preoxidized by hydrogen peroxide to form a thin NiO layer, and subsequently deposited with graphene and molybdenum disulfide (MoS2) by a facile sol assisted dip-coating method to obtain MoS2-Graphene-NiO@Ni composite. XRD, SEM, TEM, HRTEM, and XPS measurements were performed to analyze the crystal phase, morphology, and surface elemental chemical states of the as-prepared MoS2-Graphene-NiO@Ni composite. The results show that MoS2 nanosheets and graphene were well dispersed on the surface of the preoxidized Ni foam with intimate interfacial contact. The electrocatalytic hydrogen evolution reaction (HER) performance of the Ni foam based electrocatalysts were tested in concentrated alkaline aqueous electrolyte (1 M KOH). Compared with bare Ni foam, NiO@Ni and MoS2-NiO@Ni sample, the MoS2-Graphene-NiO@Ni electrode delivered superior HER performance with a lower overpotential of 150 mV at 10 mA cm−2, a smaller Tafel slope of 80 mV dec−1, and a charge transfer resistance (Rct) of 15.14 Ω. Under simulated sunlight irradiation (150 W Xenon lamp with AM 1.5 optical filter), the overpotential and Tafel slope of the MoS2-Graphene-NiO@Ni composite was further slightly reduced. The enhanced HER performance of the MoS2-Graphene-NiO@Ni composite is dominantly attributed to the synergistic effect of preoxidized Ni foam substrate, high conductive graphene and electrocatalytic active MoS2.

Highlights

  • Sol assisted dip-coating strategy was adopted to prepare MoS2-Graphene-NiO@Ni composite.

  • Delivering low overpotential of 150 mV at 10 mA cm−2 and Tafel slope of 80 mV dec−1.

  • Further enhanced HER activity was achieved under simulated sunlight irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Landman A, Dotan H, Shter GE, Wullenkord M, Houaijia A, Maljusch A, Grader GS, Rothschild A (2017) Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat Mater 16:646–651

    CAS  Google Scholar 

  2. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    CAS  Google Scholar 

  3. Yeston J (2017) Better living through water-splitting. Science 355:143–145

    Google Scholar 

  4. Zhang L, Liang Q, Huang Y, Li H, Zhou M, He B, Liu Y, Yang H, Yan J (2018) Microspheric flower-like Co4S3@Co foam synthesized by in situ sulfidization for electrocatalytic hydrogen evolution reaction. J Mater Sci, Mater Electron 29:19336–19343

    CAS  Google Scholar 

  5. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    CAS  Google Scholar 

  6. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180

    CAS  Google Scholar 

  7. Rani BJ, Ravi G, Yuvakkumar R, Ravichandran S, Ameen F, Al-Sabri A (2019) Efficient, highly stable Zn-doped NiO nanocluster electrocatalysts for electrochemical water splitting applications. J Sol–Gel Sci Technol 89:500–510

    CAS  Google Scholar 

  8. Gao Q, Jin Y, Jin Y, Wang X, Ye Z, Hong Z, Zhi M (2018) Synthesis of amorphous MoSx and MoSx/carbon nanotubes composite aerogels as effective hydrogen evolution reaction catalysts. J Sol–Gel Sci Technol 88:227–235

    CAS  Google Scholar 

  9. Wang Y, Zhou T, Jiang K, Da P, Peng Z, Tang J, Kong B, Cai W-B, Yang Z, Zheng G (2014) Reduced Mesoporous Co3O4 Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Adv Energy Mater 4:1400696

    Google Scholar 

  10. Bin L, Yu-Fei Z, Hui-Qing P, Zhen-Yu Z, Chun-Kit S, Muk-Fung Y, Tie-Rui Z, Chun-Sing L, Wen-Jun Z (2017) Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Adv Mater 29:1606521

    Google Scholar 

  11. Chunde W, Jun J, Tao D, Guihuan C, Wenjing X, Qing Y (2016) Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Adv Mater Interfaces 3:1500454

    Google Scholar 

  12. Luo Y, Li X, Cai X, Zou X, Kang F, Cheng H-M, Liu B (2018) Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12:4565–4573

    CAS  Google Scholar 

  13. Bai N, Li Q, Mao D, Li D, Dong H (2016) One-Step electrodeposition of Co/CoP film on Ni foam for efficient hydrogen evolution in alkaline solution. ACS Appl Mater Interfaces 8:29400–29407

    CAS  Google Scholar 

  14. Vrubel H, Hu X (2012) Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem 124:12875–12878

    Google Scholar 

  15. Chen G, Dong WF, Li BL, Deng YH, Wang XH, Zhang XF, Luo HQ, Li NB (2018) Cobalt incorporated MoS2 hollow structure with rich out-of-plane edges for efficient hydrogen production. Electrochim Acta 276:81–91

    CAS  Google Scholar 

  16. Luo Y, Huang D, Li M, Xiao X, Shi W, Wang M, Su J, Shen Y (2016) MoS2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction. Electrochim Acta 219:187–193

    CAS  Google Scholar 

  17. Shokhen V, Zitoun D (2017) Platinum-group metal grown on vertically aligned MoS2 as electrocatalysts for hydrogen evolution reaction. Electrochim Acta 257:49–55

    CAS  Google Scholar 

  18. Xu J, Gao J, Wang W, Wang C, Wang L (2018) Noble metal-free NiCo nanoparticles supported on montmorillonite/MoS2 heterostructure as an efficient UV–visible light-driven photocatalyst for hydrogen evolution. Int J Hydrog Energy 43:1375–1385

    CAS  Google Scholar 

  19. Zhang L, Guo Y, Iqbal A, Li B, Gong D, Liu W, Iqbal K, Liu W, Qin W (2018) One-step synthesis of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution. Int J Hydrog Energy 43:1251–1260

    CAS  Google Scholar 

  20. Hernandez Ruiz K, Liu J, Tu R, Li M, Zhang S, Vargas Garcia JR, Mu S, Li H, Goto T, Zhang L (2018) Effect of microstructure on HER catalytic properties of MoS2 vertically standing nanosheets. J Alloy Compd 747:100–108

    CAS  Google Scholar 

  21. Zhang N, Li H, Yu K, Zhu Z (2016) Differently structured MoS2 for the hydrogen production application and a mechanism investigation. J Alloy Compd 685:65–69

    CAS  Google Scholar 

  22. Zhang Z, Wang Y, Leng X, Crespi VH, Kang F, Lv R (2018) Controllable edge exposure of MoS2 for efficient hydrogen evolution with high current density. ACS Appl Energy Mater 1:1268–1275

    CAS  Google Scholar 

  23. Zhang P, Xu B, Chen G, Gao C, Gao M (2018) Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochim Acta 270:256–263

    CAS  Google Scholar 

  24. Zhang X, Ding P, Sun Y, Wang Y, Wu Y, Guo J (2017) Shell-core MoS2 nanosheets@Fe3O4 sphere heterostructure with exposed active edges for efficient electrocatalytic hydrogen production. J Alloy Compd 715:53–59

    CAS  Google Scholar 

  25. Lee C, Ozden S, Tewari CS, Park O-K, Vajtai R, Chatterjee K, Ajayan PM (2018) MoS2–carbon nanotube porous 3D network for enhanced oxygen reduction reaction. ChemSusChem 11:2960–2966

    CAS  Google Scholar 

  26. Liu Y-R, Hu W-H, Li X, Dong B, Shang X, Han G-Q, Chai Y-M, Liu Y-Q, Liu C-G (2016) Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 384:51–57

    CAS  Google Scholar 

  27. Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO (2014) Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 14:1228–1233

    CAS  Google Scholar 

  28. Lai F, Miao Y-E, Huang Y, Zhang Y, Liu T (2016) Nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl Mater Interfaces 8:3558–3566

    CAS  Google Scholar 

  29. Tao K, Gong Y, Lin J (2018) Low-temperature synthesis of NiS/MoS2/C nanowires/nanoflakes as electrocatalyst for hydrogen evolution reaction in alkaline medium via calcining/sulfurizing metal-organic frameworks. Electrochim Acta 274:74–83

    CAS  Google Scholar 

  30. Sangeetha DN, Selvakumar M (2018) Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions. Appl Surf Sci 453:132–140

    CAS  Google Scholar 

  31. Chen X, Zhang K, An Z, Wang L, Wang Y, Sun S, Guo T, Zhang D, Xue Z, Zhou X, Lu X (2018) Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy 43:7326–7337

    CAS  Google Scholar 

  32. Fageria P, Sudharshan KY, Nazir R, Basu M, Pande S (2017) Decoration of MoS2 on g-C3N4 surface for efficient hydrogen evolution reaction. Electrochim Acta 258:1273–1283

    CAS  Google Scholar 

  33. Wang X, Hong M, Zhang F, Zhuang Z, Yu Y (2016) Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustain Chem Eng 4:4055–4063

    CAS  Google Scholar 

  34. Li W, Li F, Wang X, Tang Y, Yang Y, Gao W, Li R (2017) A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction. Appl Surf Sci 401:190–197

    CAS  Google Scholar 

  35. Guo J, Zhang K, Sun Y, Zong Y, Guo Z, Liu Q, Zhang X, Xia Y-Y (2018) Enhanced hydrogen evolution of MoS2/RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorg Chem Front 5:2092–2099

    CAS  Google Scholar 

  36. Deng ZH, Li L, Ding W, Xiong K, Wei ZD (2015) Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. Chem Commun 51:1893–1896

    CAS  Google Scholar 

  37. Xue C, An H, Yang G (2018) Facile construction of MoS2/CdS eutectic clusters anchored on rGO edge with enhanced hydrogen generation performance. Catal Today 317:99–107

    CAS  Google Scholar 

  38. Guan Z, Wang P, Li Q, Li G, Yang J (2018) Constructing a ZnIn2S4 nanoparticle/MoS2-RGO nanosheet 0D/2D heterojunction for significantly enhanced visible-light photocatalytic H2 production. Dalton Trans 47:6800–6807

    CAS  Google Scholar 

  39. Liu Y-R, Shang X, Gao W-K, Dong B, Chi J-Q, Li X, Yan K-L, Chai Y-M, Liu Y-Q, Liu C-G (2017) Ternary CoS2/MoS2/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution. Appl Surf Sci 412:138–145

    CAS  Google Scholar 

  40. Zhu P, Chen Y, Zhou Y, Yang Z, Wu D, Xiong X, Ouyang F (2018) Defect-rich MoS2 nanosheets vertically grown on graphene-protected Ni foams for high efficient electrocatalytic hydrogen evolution. Int J Hydrog Energy 43:14087–14095

    CAS  Google Scholar 

  41. Kai Y, Yiran L (2016) Direct Growth of MoS2 microspheres on Ni foam as a hybrid nanocomposite efficient for oxygen evolution reaction. Small 12:2975–2981

    Google Scholar 

  42. Yin X, Sun G, Song A, Wang L, Wang Y, Dong H, Shao G (2017) A novel structure of Ni-(MoS2/GO) composite coatings deposited on Ni foam under supergravity field as efficient hydrogen evolution reaction catalysts in alkaline solution. Electrochim Acta 249:52–63

    CAS  Google Scholar 

  43. Zhu W, Yue X, Zhang W, Yu S, Zhang Y, Wang J, Wang J (2016) Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun 52:1486–1489

    CAS  Google Scholar 

  44. You B, Jiang N, Sheng M, Bhushan MW, Sun Y (2016) Hierarchically Porous Urchin-Like Ni2P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis 6:714–721

    CAS  Google Scholar 

  45. Zhou X, Xia Z, Tian Z, Ma Y, Qu Y (2015) Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. J Mater Chem A 3:8107–8114

    CAS  Google Scholar 

  46. Guo M, Xu K, Qu Y, Zeng F, Yuan C (2018) Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. Electrochim Acta 268:10–19

    CAS  Google Scholar 

  47. Xu Q, Jiang H, Zhang H, Jiang H, Li C (2018) Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim Acta 259:962–967

    CAS  Google Scholar 

  48. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. JACS 80:1339–1339

    CAS  Google Scholar 

  49. Wu M, Xia S, Ding J, Zhao B, Jiao Y, Du A, Zhang H (2018) Growth of MoS2 nanoflowers with expanded interlayer distance onto N-doped graphene for reversible lithium storage. ChemElectroChem 5:2263–2270

    CAS  Google Scholar 

  50. Sun S, Sun M, Kong Y, Fang Y, Yao Y (2016) MoS2 and graphene as dual, cocatalysts for enhanced visible light photocatalytic activity of Fe2O3. J Sol–Gel Sci Technol 80:719–727

    CAS  Google Scholar 

  51. Cheng G, Yang W, Dong C, Kou T, Bai Q, Wang H, Zhang Z (2015) Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A 3:17469–17478

    CAS  Google Scholar 

  52. Guan X-H, Lan X, Lv X, Yang L, Wang G-S (2018) Synthesis of NiMoSO/rGO composites based on NiMoO4 and reduced graphene with high-performance electrochemical electrodes. ChemistrySelect 3:6719–6728

    CAS  Google Scholar 

  53. Wang Y, Guo Y, Chen W, Luo Q, Lu W, Xu P, Chen D, Yin X, He M (2018) Sulfur-doped reduced graphene oxide/MoS2 composite with exposed active sites as efficient Pt-free counter electrode for dye-sensitized solar cell. Appl Surf Sci 452:232–238

    CAS  Google Scholar 

  54. Yang H, Kershaw SV, Wang Y, Gong X, Kalytchuk S, Rogach AL, Teoh WY (2013) Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites. J Phys Chem C 117:20406–20414

    CAS  Google Scholar 

  55. He B, Zhou M, Hou Z, Li G, Kuang Y (2017) Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. J Mater Res 33:519–527

    Google Scholar 

  56. Wang T, Wu L, Xu X, Sun Y, Wang Y, Zhong W, Du Y (2017) An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Sci Rep. 7:11891

    Google Scholar 

  57. Sun C, Zhang J, Ma J, Liu P, Gao D, Tao K, Xue D (2016) N-doped WS2 nanosheets: a high-performance electrocatalyst for the hydrogen evolution reaction. J Mater Chem A 4:11234–11238

    CAS  Google Scholar 

  58. Li J, Wei G, Zhu Y, Xi Y, Pan X, Ji Y, Zatovsky IV, Han W (2017) Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J Mater Chem A 5:14828–14837

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation for Youths of Hunan Provincial of China (No. 2019JJ50206), the Innovation Platform Foundation Project of Hunan Provincial Education Department of China (No. 18K087), and Research-based Learning and innovative Experimental Program for College students of Hunan Provincial (No. S201912658002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Huang, Y., Zhang, L. et al. Preparation of MoS2-Graphene-NiO@Ni foam composite by sol coating for (photo)electrocatalytic hydrogen evolution reaction. J Sol-Gel Sci Technol 93, 462–470 (2020). https://doi.org/10.1007/s10971-019-05195-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05195-w

Keywords

Navigation