Skip to main content
Log in

Novel Zr–Cu–Fe nanocomposite metal oxides: structural, magnetic and composition activity effects on photodegradation of phenols

  • Original Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pure CuFe2O4 nanoparticles were synthesized using sol–gel method technique. Effect of Zr/Cu substitution (Cu1−xZrx, where x = 0.25, 0.50, 0.75, and 1.00) on the structural, morphological, and magnetic properties was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), infrared Fourier transform infrared (FTIR), and vibrating sample magnetometer (VSM). The photocatalytic behavior of pure CuFe2O4 as well Zr-substituted samples was investigated for degradation of phenol in aqueous solution in the presence of ultraviolet irradiation. The XRD results of pure CuFe2O4 confirmed the formation of single tetragonal structure phase, while introducing zirconium in the structural composition resulted in a decrease in the crystallinity and gradual disappearance of the cuprospinel phase accompanied with appearance of single metal oxides species (Fe2O3, ZrO2, Cu4O3). Based on the scanning (SEM–EDX), the samples consist of agglomerated particles with varying sizes and shapes related to their compositions. The magnetic hysteresis loops of all samples exhibited room temperature ferromagnetism with variable shapes, saturation magnetization, and coercivity values. All samples showed a significant photocatalytic activity when irradiated with ultraviolet light. The highest photocatalytic efficiency (92%) for phenol degradation was achieved through the 25% Zr-substituted sample under irradiation time of 150 min.

Highlights

  • Novel Zr–Cu–Fe metal oxide nanocomposites were synthesized using sol–gel technique.

  • Effect of Zr/Cu substitution percentage on the structural, morphological, and magnetic properties was investigated.

  • The photocatalytic activity of the nanocomposites was also investigated.

  • A significant photocatalytic activity enhancement toward phenol degradation was achieved through Zr/Cu substitution especially at 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gleick PH (2002) Dirty-water: estimated deaths from water-related diseases 2000–2020 Oakland: Pacific Institute for studies in Development, environment, and security. pp. 1–12

  2. Brostow W et al. (2009) Polymeric flocculants for wastewater and industrial effluent treatment. J Mater Educ 31(3–4):157–166

    CAS  Google Scholar 

  3. Gupta VK et al. (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2:6380–6388

    Article  CAS  Google Scholar 

  4. Ciabattia I et al. (2009) Demonstration of a treatment system for purification and reuse of laundry wastewater. Desalination 245(1–3):451–459

    Article  CAS  Google Scholar 

  5. Kannan S, Dubey A, Knozinger H (2005) Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J Catal 231(2):381–392

    Article  CAS  Google Scholar 

  6. Santos A et al. (2006) Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media. Appl Catal B 65(3):269–281

    Article  CAS  Google Scholar 

  7. Kulkarni SJ, Kaware JP (2013) Review on research for removal of phenol from wastewater. Int J Sci Res Publ 3(4):1–5

    Google Scholar 

  8. Villegas LGC et al. (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2(3):157–167

    Article  CAS  Google Scholar 

  9. Zhu L, Chen B, Shen X (2000) Sorption of phenol, p-nitrophenol, and aniline to dual-cation organobentonites from water. Environ Sci Technol 34(3):468–475

    Article  CAS  Google Scholar 

  10. Mallek M et al. (2018) Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J Environ Manag 223:576–585

    Article  CAS  Google Scholar 

  11. Zhu Z et al. (2018) Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: ultra-filtration performance and HPLC-MS2 profile. Food Res Int 111:291–298

    Article  CAS  Google Scholar 

  12. Rezakazemi M, Maghami M, Mohammadi T (2018) Wastewaters treatment containing phenol and ammonium using aerobic submerged membrane bioreactor. Chem Cent J 12(1):79

    Article  CAS  Google Scholar 

  13. Wu D et al. (2019) Feasibility and energy consumption analysis of phenol removal from salty wastewater by electro-electrodialysis. Sep Purif Technol 215:44–50

    Article  CAS  Google Scholar 

  14. Védrine J (2017) Heterogeneous catalysis on metal oxides. Catalysts 7(11):341

    Article  CAS  Google Scholar 

  15. Sudha D, Sivakumar P (2015) Review on the photocatalytic activity of various composite catalysts. Chem Eng Process 97:112–133

    Article  CAS  Google Scholar 

  16. Wahba MA, Yakout SM (2019) Innovative visible light photocatalytic activity for V-doped ZrO2 structure: optical, morphological, and magnetic properties. J Sol-Gel Sci Technol 92(3):628–640

  17. Adhikari S, Sarkar D (2015) Metal oxide semiconductors for dye degradation. Mater Res Bull 72:220–228

    Article  CAS  Google Scholar 

  18. Chen X et al. (2015) The synthesis of ZnO/SnO2 porous nanofibers for dye adsorption and degradation. Dalton Trans 44(7):3034–3042

    Article  CAS  Google Scholar 

  19. Gnanasekaran L et al. (2017) Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J Photochem Photobiol B 173:43–49

    Article  CAS  Google Scholar 

  20. Reddy LH et al. (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  CAS  Google Scholar 

  21. Linsebigler AL, Lu G, Yates Jr JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  22. Nawle AC et al. (2017) Deposition, characterization, magnetic and optical properties of Zn doped CuFe2O4 thin films. J Alloy Compd 695:1573–1582

    Article  CAS  Google Scholar 

  23. Shahbaz Tehrani F et al. (2012) Structural, magnetic, and optical properties of zinc- and copper-substituted nickel ferrite nanocrystals. J Supercond Nov Magn 25(7):2443–2455

    Article  CAS  Google Scholar 

  24. Kefeni KK, Mamba BB, Msagati TA (2017) Application of spinel ferrite nanoparticles in water and wastewater treatment: a review. Sep Purif Technol 188:399–422

    Article  CAS  Google Scholar 

  25. Nidheesh P (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. Rsc Adv 5(51):40552–40577

    Article  CAS  Google Scholar 

  26. Gubbala S et al. (2004) Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Phys B 348(1-4):317–328

    Article  CAS  Google Scholar 

  27. Saafan S et al. (2010) AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J Magn Magn Mater 322(16):2369–2374

    Article  CAS  Google Scholar 

  28. Singhal S, Chandra K (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Chem 180(1):296–300

    Article  CAS  Google Scholar 

  29. Zhang F et al. (2015) Zinc ferrite catalysts for ozonation of aqueous organic contaminants: phenol and bio-treated coking wastewater. Sep Purif Technol 156:625–635

    Article  CAS  Google Scholar 

  30. Ding Y et al. (2013) Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Appl Catal B 129:153–162

    Article  CAS  Google Scholar 

  31. Zhang H et al. (2017) Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its application in the Fenton-based process. J Environ Sci 53:1–8

    Article  Google Scholar 

  32. Roonasi P, Nezhad AY (2016) A comparative study of a series of ferrite nanoparticles as heterogeneous catalysts for phenol removal at neutral pH. Mater Chem Phys 172:143–149

    Article  CAS  Google Scholar 

  33. Cullity B, Stock Sá (1978) Elements of x-ray diffraction. Addison-Wesley, Reading, MA

    Google Scholar 

  34. Fagal GA et al. (2012) Effect of La2O3-treatment on textural and solid–solid interactions in ferric/cobaltic oxides system. J Solid State Chem 194:162–167

    Article  CAS  Google Scholar 

  35. El‐Shobaky GA et al. (2009) Catalytic oxidation of CO by O2 over nanosized CuO–ZnO system prepared under various conditions. Can J Chem Eng 87(5):792–800

    Article  CAS  Google Scholar 

  36. Ghanem A et al. (2014) Photocatalytic activity of hyperbranched polyester/TiO2 nanocomposites. Applied. Catal A 472:191–197

    Article  CAS  Google Scholar 

  37. Rehim MHA et al. (2016) Photocatalytic activity and antimicrobial properties of paper sheets modified with TiO2/Sodium alginate nanocomposites. Carbohydr Polym 148:194–199

    Article  CAS  Google Scholar 

  38. Prince E, Treuting R (1956) The structure of tetragonal copper ferrite. Acta Crystallogr 9(12):1025–1028

    Article  CAS  Google Scholar 

  39. Mexmain J (1971) Contribution a l’etude du ferrite cuivreux et de ses solutions solides avec le ferrite cuivrique. Annales de Chimie. Vol 1971. pp. 297–308

  40. Mazen S (2000) Tetravalent ions substitution in Cu–ferrite; structure formation and electrical properties. Mater Chem Phys 62(2):131–138

    Article  CAS  Google Scholar 

  41. Cross WB et al. (1999) Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field. J Mater Chem 9(10):2545–2552

    Article  CAS  Google Scholar 

  42. Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J Appl Phys 51(10):5362–5367

    Article  CAS  Google Scholar 

  43. Suzuki-Muresan T et al. (2010) Minimization of absorption contrast for accurate amorphous phase quantification: application to ZrO2 nanoparticles. J Appl Crystallogr 43(5):1092–1099

    Article  CAS  Google Scholar 

  44. O'keeffe M, Bovin J (1978) The crystal structure of paramelaconite Cu4O3. Am Mineral 63(1–2):180–185

    CAS  Google Scholar 

  45. Bondars B et al. (1995) Powder diffraction investigations of plasma sprayed zirconia. J Mater Sci 30(6):1621–1625

    Article  CAS  Google Scholar 

  46. McCullough Jt, Trueblood K (1959) The crystal structure of baddeleyite (monoclinic ZrO2). Acta Crystallogr 12(7):507–511

    Article  CAS  Google Scholar 

  47. Kröger FA (1964) The chemistry of imperfect crystals. North-Holland Pub, Co

    Book  Google Scholar 

  48. Sargent W (1980) Table of periodic properties of the elements. Sargent-Welch Scientific, Skokie, IL

    Google Scholar 

  49. Wahba MA, Mohamed W, Hanna AA (2016) Sol-gel synthesis, characterization of Fe/ZrO2 nanocomposites and their photodegradation activity on indigo carmine and methylene blue textile dyes. Int J ChemTech Res 9(5):914–925

    CAS  Google Scholar 

  50. Krinsley DH et al. (2005) Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. University Press, Cambridge

    Google Scholar 

  51. Zeynizadeh B, Gholamiyan E, Gilanizadeh M (2018) Magnetically recoverable CuFe2O4 nanoparticles as an efficient heterogeneous catalyst for green formylation of alcohols. Current Chem Lett 7(4):121–130

    Google Scholar 

  52. Peymanfar R, Azadi F, Yassi Y (2018) Preparation and characterization of CuFe2O4 nanoparticles by the sol-gel method and investigation of its microwave absorption properties at Ku-band frequency using silicone rubber. In Multidisciplinary Digital Publishing Institute Proceedings. Vol. 2, p. 1155

  53. Zhao J et al. (2012) Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 14(18):5879–5885

    Article  CAS  Google Scholar 

  54. Raul PK et al. (2014) CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv 4(76):40580–40587

    Article  CAS  Google Scholar 

  55. Dharmaraj N, Kim C, Kim H (2006) Synthesis and characterisation of zirconium oxide nanofibers by electrospinning. Synth Reactivity Inorg, Met-Org Nano-Met Chem 36(1):29–32

    Article  CAS  Google Scholar 

  56. Ranjbar M et al. (2012) Preparation and characterization of tetragonal zirconium oxide nanocrystals from isophthalic acid-zirconium (IV) nanocomposite as a new precursor. International. J Nanosci Nanotechnol 8(4):191–196

    Google Scholar 

  57. Cullity BD, Graham CD (2011) Introduction to magnetic materials. IEEE Press, John Wiley & Sons. Inc., Hoboken, New Jersey

  58. Tehrani FS et al. (2012) Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals. J Supercond Nov Magn 25(7):2443–2455

    Article  CAS  Google Scholar 

  59. Hu C, Gao Z, Yang X (2008) One-pot low temperature synthesis of MFe2O4 (M = Co, Ni, Zn) superparamagnetic nanocrystals. J Magn Magn Mater 320(8):L70–L73

    Article  CAS  Google Scholar 

  60. Sun S et al. (2004) Monodisperse mfe2o4 (m = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Article  CAS  Google Scholar 

  61. Kale A, Gubbala S, Misra R (2004) Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J Magn Magn Mater 277(3):350–358

    Article  CAS  Google Scholar 

  62. Faheem M et al. (2018) Synthesis of Cu2O–CuFe2O4 microparticles from Fenton sludge and its application in the Fenton process: the key role of Cu2O in the catalytic degradation of phenol. RSC Adv 8(11):5740–5748

    Article  CAS  Google Scholar 

  63. Xu C et al. (2010) Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J Hazard Mater 176(1-3):807–813

    Article  CAS  Google Scholar 

  64. Lee DW, Yoo BR (2014) Advanced metal oxide (supported) catalysts: synthesis and applications. J Ind Eng Chem 20(6):3947–3959

    Article  CAS  Google Scholar 

  65. Murali DS, Aryasomayajula S (2018) Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films. Appl Phys A 124(3):279

    Article  CAS  Google Scholar 

  66. Fan Z-J et al. (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS nano 5(1):191–198

    Article  CAS  Google Scholar 

  67. López U et al. (2019) Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J Nanomater 2019(3):1–12.

  68. Tian G et al. (2009) Enhanced photocatalytic activity of S-doped TiO2–ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater 166(2–3):939–944

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelrahman A. Badawy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahba, M.A., Badawy, A.A. Novel Zr–Cu–Fe nanocomposite metal oxides: structural, magnetic and composition activity effects on photodegradation of phenols. J Sol-Gel Sci Technol 94, 637–647 (2020). https://doi.org/10.1007/s10971-019-05190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05190-1

Keywords

Navigation