Skip to main content
Log in

Effect of solution concentration on low-temperature synthesis of BCZT powders by sol–gel-hydrothermal method

  • Original Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powders were successfully synthesized by sol–gel-hydrothermal method. The effect of NaOH concentration on microstructure and phase composition of BCZT powders was studied. The results of XRD, SEM, TEM, FTIR, and EDS showed that the synthesis temperature of BCZT powders could be decreased to a low temperature of 180 °C, which was about 1150 °C lower when compared with solid-state reaction and 800 °C lower when compared with sol–gel methods respectively. The NaOH concentration exerted a great effect on the structure of BCZT powders, as well as the average particle size. When the NaOH concentration was 8 M, BCZT powders had a cubic phase perovskite structure with a homogeneous composition, and the average particle size was about 60 nm. The BCZT ceramics followed by sintering had dense structure and excellent electrical properties (2Pr = 24.62 μC/cm2, 2Ec = 3.24 kV/cm, d33 = 488 pC/N). The significant properties could be attributed to the high activity of powders synthesized by sol–gel-hydrothermal method. The present study may provide a new method for low-temperature synthesis of lead-free piezoelectric powders with fine phase, microscopic morphology, and high activity.

Highlights

  • Well-crystallized BCZT powders were successfully synthesized by sol–gel-hydrothermal method.

  • The synthesis temperature was decreased to a low temperature of 180 °C.

  • Effects of alkaline solution concentration on structure of sol–gel-hydrothermal derived BCZT powders were analyzed and the formation mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jacob KS, Panicker NR, Selvam IP, Kumar V (2003) Sol-gel synthesis of nanocrystalline PZT using a novel system. J Sol-Gel Sci Technol 28(3):289–295

    Article  CAS  Google Scholar 

  2. Montanari G, Costa AL, Albonetti S, Galassi C (2005) Nb-doped PZT material by sol-gel combustion. J Sol-Gel Sci Technol 36(2):203–211

    Article  CAS  Google Scholar 

  3. Xu Z, Qiang H (2016) Dielectric and piezoelectric properties of (1-x)Ba0.67Sr0.33TiO3–xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics. J Sol-Gel Sci Technol 77(3):650–653

    Article  CAS  Google Scholar 

  4. Kheyrdan A, Abdizadeh H, Shakeri A, Golobostanfard MR (2018) Structural, electrical, and optical properties of sol-gel-derived zirconium-doped barium titanate thin films on transparent conductive substrates. J Sol-Gel Sci Technol 86(1):141–150

    Article  CAS  Google Scholar 

  5. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602

    Article  Google Scholar 

  6. Li W, Xu Z, Chu R, Fu P, Zang G (2010) Piezoelectric and dielectric properties of (Ba1-xCax)(Ti0.95Zr0.05)O3 lead‐free ceramics. J Am Ceram Soc 93(10):2942–2944

    Article  CAS  Google Scholar 

  7. Li W, Xu Z, Chu R, Fu P, An P (2012) Effect of Ho doping on piezoelectric properties of BCZT ceramics. Ceram Int 38(5):4353–4355

    Article  CAS  Google Scholar 

  8. Castkova K, Maca K, Cihlar J, Hughes H, Matousek A, Tofel P, Bai Y, Button TW (2015) Chemical synthesis, sintering and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead‐free ceramics. J Am Ceram Soc 98(8):2373–2380

    Article  CAS  Google Scholar 

  9. Praveen JP, Kumar K, James A, Karthik T, Asthana S, Das D (2014) Large piezoelectric strain observed in sol–gel derived BZT–BCT ceramics. Curr Appl Phys 14(3):396–402

    Article  Google Scholar 

  10. Zhang Y, Wang L, Xue D (2012) Molten salt route of well dispersive barium titanate nanoparticles. Powder technol 217:629–633

    Article  CAS  Google Scholar 

  11. Liu Y, Pu Y, Sun Z (2014) Enhanced relaxor ferroelectric behavior of BCZT lead-free ceramics prepared by hydrothermal method. Mater Lett 137:128–131

    Article  CAS  Google Scholar 

  12. Puli VS, Kumar A, Chrisey DB, Tomozawa M, Scott J, Katiyar RS (2011) Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J Phys D Appl Phys 44(39):395403

    Article  Google Scholar 

  13. Praveen JP, Karthik T, James A, Chandrakala E, Asthana S, Das D (2015) Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J Eur Ceram Soc 35(6):1785–1798

    Article  CAS  Google Scholar 

  14. Bockmeyer M, Löbmann P (2008) Formation, densification and properties of sol–gel TiO2 films prepared from triethanolamine-chelated soluble precursor powders. J Sol-Gel Sci Technol 45(3):251–259

    Article  CAS  Google Scholar 

  15. Xie L, Ma J, Wu P, Tian H, Zhao Z, Zhou J, Hu Y, Wang Y, Tao J, Zhu X (2007) Hydrothermal synthesis and characterization of bismuth titanate regular tetrahedron crystallites. Mater Res Bull 42(2):389–393

    Article  CAS  Google Scholar 

  16. Zheng H, Zhu K, Wu Q, Liu J, Qiu J (2013) Preparation and characterization of monodispersed BaTiO3 nanocrystals by sol–hydrothemal method. J Cryst Growth 363:300–307

    Article  CAS  Google Scholar 

  17. Song Z-Q, Wang S-B, Yang W, Li M, Wang H, Yan H (2004) Synthesis of manganese titanate MnTiO3 powders by a sol–gel–hydrothermal method. Mater Sci Eng B-Adv 113(2):121–124

    Article  Google Scholar 

  18. Yu H, Ouyang S, Yan S, Li Z, Yu T, Zou Z (2011) Sol–gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. J Mater Chem 21(30):11347–11351

    Article  CAS  Google Scholar 

  19. Yu D, Jin A-m, Zhang Q-l, Yang H, Hu L, Cheng D (2015) Scandium and gadolinium co-doped BaTiO3 nanoparticles and ceramics prepared by sol–gel–hydrothermal method: Facile synthesis, structural characterization and enhancement of electrical properties. Powder Technol 283:433–439

    Article  CAS  Google Scholar 

  20. Zuo Q, Luo L, Yao Y (2015) The electrical, upconversion emission, and temperature sensing properties of Er3+/Yb3+-codoped Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. J Alloy Compd 632:711–716

    Article  CAS  Google Scholar 

  21. Jiang Y, Tang X, Ju S, Liu Q, Zhang T, Xiong H (2016) Influence of sintering temperature on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J Mater Sci Mater Electron 27(3):3048–3052

    Article  CAS  Google Scholar 

  22. Ji X, Wang C, Li S, Zhang S, Tu R, Shen Q, Shi J, Zhang L (2018) Structural and electrical properties of BCZT ceramics synthesized by sol–gel process. J Mater Sci Mater Electron 29(9):7592–7599

    Article  CAS  Google Scholar 

  23. Li S, Wang C, Ji X, Shen Q, Zhang L (2017) Effect of composition fluctuation on structural and electrical properties of BZT-xBCT ceramics prepared by plasma activated sintering. J Eur Ceram Soc 37(5):2067–2072

    Article  CAS  Google Scholar 

  24. Outzourhit A, Raghni MEI, Hafid M, Bensamka F, Outzourhit A (2002) Characterization of hydrothermally prepared BaTi1-xZrxO3. J Alloy Compd 340(1-2):214–219

    Article  CAS  Google Scholar 

  25. Luo B, Wang X, Zhao Q, Li L (2015) Synthesis, characterization and dielectric properties of surface functionalized ferroelectric ceramic/epoxy resin composites with high dielectric permittivity. Compos Sci Technol 112:1–7

    Article  CAS  Google Scholar 

  26. Wang W, Cao L, Liu W, Su G, Zhang W (2013) Low-temperature synthesis of BaTiO3 powders by the sol–gel-hydrothermal method. Ceram Int 39(6):7127–7134

    Article  CAS  Google Scholar 

  27. Hwang UY, Park HS, Koo KK (2004) Low‐temperature synthesis of fully crystallized spherical BaTiO3 particles by the gel–sol method. J Am Ceram Soc 87(12):2168–2174

    Article  CAS  Google Scholar 

  28. Thongtha A, Wattanawikkam C, Bongkarn T (2011) Phase formation and dielectric properties of (Pb0.925Ba0.075)(Zr1-xTix)O3 ceramics prepared by the solid-state reaction method. Phase Transit 84(11-12):952–959

    Article  CAS  Google Scholar 

  29. Chen CF, Reagor DW, Russell SJ, Marksteiner QR, Earley LM, Dalmas DA, Volz HM, Guidry DR, Papin PA, Yang P (2011) Sol–gel processing and characterizations of a Ba0.75Sr0.25Ti0.95Zr0.05O3 ceramic. J Am Ceram Soc 94(11):3727–3732

    Article  CAS  Google Scholar 

  30. Ghosh S, Dasgupta S, Sen A, Maiti HS (2007) Synthesis of barium titanate nanopowder by a soft chemical process. Mater Lett 61(2):538–541

    Article  CAS  Google Scholar 

  31. Simões AZ, Moura F, Onofre T, Ramirez M, Varela JA, Longo E (2010) Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles. J Alloy Compd 508(2):620–624

    Article  Google Scholar 

  32. Kolenko YV, Kovnir KA, Neira IS, Taniguchi T, Ishigaki T, Watanabe T, Sakamoto N, Yoshimura M (2007) A novel, controlled, and high-yield solvothermal drying route to nanosized barium titanate powders. J Phys Chem C 111(20):7306–7318

    Article  CAS  Google Scholar 

  33. Wang L, Kang H, Li K, Xue D, Liu C (2008) Phase evolution of BaTiO3 nanoparticles: An identification of BaTi2O5 intermediate phase in calcined stearic acid gel. J Phys Chem C 112(7):2382–2388

    Article  CAS  Google Scholar 

  34. Reiss H (1951) The growth of uniform colloidal dispersions. J Chem Phys 19(4):482–487

    Article  CAS  Google Scholar 

  35. Nie X, Yan S, Guo S, Cao F, Yao C, Mao C, Dong X, Wang G (2018) Influence of Ca2+ concentration on structure and electrical properties of (Ba1-xCax)(Zr0.2Ti0.8)O3 ceramics. Mater Res Express 5(3):036301

    Article  Google Scholar 

  36. Lu X, Fang B, Zhang S, Yuan N, Ding J, Zhao X, Wang F, Tang Y, Shi W, Xu H (2017) Decreasing sintering temperature for BCZT lead-free ceramics prepared via hydrothermal route. Funct Mater Lett 10(4):1750046

    Article  CAS  Google Scholar 

  37. Wu J, Xiao D, Wu W, Zhu J, Wang J (2011) Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J Alloy Compd 509(41):359

    Article  Google Scholar 

  38. Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2012) Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1-xZrx)O3 lead-free piezoelectric ceramics. J Eur Ceram Soc 32(4):891–898

    Article  CAS  Google Scholar 

  39. Hunpratub S, Maensiri S, Chindaprasirt P (2014) Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics by hydrothermal method. Ceram Int 40(8):13025–13031

    Article  CAS  Google Scholar 

  40. Ji X, Wang C, Zhang S, Rong T, Shen Q, Shi J, Zhang L (2019) Structural and electrical properties of BCZT ceramics synthesized by sol–gel-hydrothermal process at low temperature. J Mater Sci Mater Electron 30(13):12197–12203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51972252, 51272195, and 51521001) International Science and Technology Cooperation Project of Hubei Province (2016AHB008), Nature Science Foundation of Hubei Province (2016CFA006) and Fundamental Research Funds for the Central Universities (WUT: 2019III029). XJ is supported to study at the Tokyo Institute of Technology for 1 year through China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanbin Wang or Lianmeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Wang, C., Luo, W. et al. Effect of solution concentration on low-temperature synthesis of BCZT powders by sol–gel-hydrothermal method. J Sol-Gel Sci Technol 94, 205–212 (2020). https://doi.org/10.1007/s10971-019-05177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05177-y

Keywords

Navigation