Abstract
In this work, we fabricated copper supported on hollow silica–alumina composite spheres for catalytic decomposition of nitrous oxide. The copper supported on the hollow spheres was obtained by impregnation of the active copper species on the hollow silica–alumina composite sphere support prepared by the template method using spherical polystyrene particles. The supported copper catalysts on the hollow spheres showed higher conversion of nitrous oxide than supported copper catalyst on fine silica–alumina composite particles. The catalyst activity was significantly improved by adjusting impregnation temperature, and the supported copper catalyst impregnated at 353 K exhibits around 75% of nitrous oxide conversion at 573 K. The results of the DR UV–Vis spectra, the EDX analysis, and nitrogen adsorption measurement indicate that the highly active catalyst consisted of high ratio of isolated copper ions inside the shell of the hollow spheres.

Highlights
-
We fabricated copper on supported hollow silica-alumina composite sphere catalyst.
-
The catalyst showed higher nitrous oxide conversion than the fine particle catalyst.
-
The catalyst activity was significantly improved by adjusting impregnation temperature.
-
The highly active catalyst included high ratio of isolated copper ions in the hollow sphere shell.
This is a preview of subscription content, access via your institution.








References
- 1.
Saravanamurugan S, Palanichamy M, Arabindoo B, Murugesan V (2004) J Mol Catal A 218:101–106
- 2.
Serrano DP, van Grieken R, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74
- 3.
Wang Y, Guo LF, Ling Y, Liu YM, Li XH, Wu HH, Wu P (2010) Appl Catal A 379:45–53
- 4.
Qiao QW, Wang RJ, Gou ML, Yang XX (2014) Microporous Mesoporous Mater 195:250–257
- 5.
Lacheen HS, Iglesia E (2005) J Catal 230:173–185
- 6.
Li XF, Shen BJ, Xu CM (2010) Appl Catal A 375:222–229
- 7.
Li XM, Han DZ, Wang H, Liu GB, Wang B, Li Z, Wu JH (2015) Fuel 144:9–14
- 8.
Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S (1986) J Chem Soc Chem Commun: 1272–1273.
- 9.
Pârvulescu VI, Grange P, Delmon B (2001) Appl Catal B 33:223–237
- 10.
De Lucas A, Valverde JL, Dorado F, Romero A, Asencio I (2005) J Mol Catal A 225:47–58
- 11.
Bin F, Song CL, Lv G, Song JO, Wu SH, Li XD (2014) Appl Catal B 150–151: 532–543.
- 12.
Salazar M, Becker R, Grünert W (2014) Appl Catal B 165:316–327
- 13.
Kögel M, Sandoval VH, Schwieger W, Tissler A, Turek T (1998) Chem Eng Technol 21:655–658
- 14.
Wang J, Mizuno N, Misono M (1998) Bull Chem Soc Jpn 71:947–954
- 15.
Palella BI, Cadoni M, Frache A, Pastore HO, Pirone R, Russo G, Coluccia S, Marchese L (2003) J Catal 217:100–106
- 16.
Tsai M-L, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) J Am Chem Soc 136:3522–3529
- 17.
Zou W, Xie PF, Hua WM, Wang YD, Kong DJ, Yue YH, Ma Z, Yang WM, Gao Z (2014) J Mol Catal A 394:83–88
- 18.
Centi G, Perathoner S, Torre T, Verduna MG (2000) Catal Today 55:61–69
- 19.
Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Appl Catal B 51:165–170
- 20.
El-Bahy ZM, Mohamed MM, Zidan FI, Thabet MS (2008) J Hazard Mater 153:364–371
- 21.
Umegaki T, Imamura S, Toyama N, Kojima Y (2014) Microporous Mesoporous Mater 196:349–353
- 22.
Toyama N, Inoue H, Ohki S, Tansho M, Shimizu T, Umegaki T, Kojima Y (2016) Adv Mater Lett 7:339–343
- 23.
Toyama N, Ohki S, Tansho M, Shimizu T, Umegaki T, Kojima Y (2016) Jpn Inst Energy 95:480–486
- 24.
Ravishankara AR, Daniel JS, Portmann RW (2009) Science 326:123–125
- 25.
Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Appl Catal B 16:359–374
- 26.
Moretti G, Dossi C, Fusi A, Recchia S, Psaro R (1999) Appl Catal B 20:67–73
- 27.
Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395
- 28.
Shimizu KI, Maruyama R, Hatamachi T, Kodama T (2007) J Phys Chem C 111:6440–6446
- 29.
Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Angew Chem Int Ed 40:4570–4590
- 30.
Wang YM, Wu ZY, Shi LY, Zhu JH (2005) Adv Mater 17:323–327
- 31.
De Carvalho MCNA, Passos FB, Schma M (2000) Appl Catal A 193:265–276
- 32.
Bennici S, Gervasini A, Ravasio N, Zaccheria F (2003) J Phys Chem B 107:5168–5176
- 33.
Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalez-Elipe ARJ (2002) J Phys Chem B 106:6921–6929
- 34.
Jirka I, Bosacek V (1991) Zeolites 11:77–80
Acknowledgements
This work was supported by microstructural characterization platform of University of Tokyo as a program of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful to Mr. Ito for TEM measurement support.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Umegaki, T., Katori, H., Otake, K. et al. Fabrication of copper supported on hollow silica–alumina composite spheres for catalytic decomposition of nitrous oxide. J Sol-Gel Sci Technol 92, 715–722 (2019). https://doi.org/10.1007/s10971-019-05117-w
Received:
Accepted:
Published:
Issue Date:
Keywords
- Copper supported catalyst
- Hollow silica–alumina composite spheres
- Decomposition of nitrous oxide
- Isolated copper species
- Impregnation temperature