Fabrication of copper supported on hollow silica–alumina composite spheres for catalytic decomposition of nitrous oxide


In this work, we fabricated copper supported on hollow silica–alumina composite spheres for catalytic decomposition of nitrous oxide. The copper supported on the hollow spheres was obtained by impregnation of the active copper species on the hollow silica–alumina composite sphere support prepared by the template method using spherical polystyrene particles. The supported copper catalysts on the hollow spheres showed higher conversion of nitrous oxide than supported copper catalyst on fine silica–alumina composite particles. The catalyst activity was significantly improved by adjusting impregnation temperature, and the supported copper catalyst impregnated at 353 K exhibits around 75% of nitrous oxide conversion at 573 K. The results of the DR UV–Vis spectra, the EDX analysis, and nitrogen adsorption measurement indicate that the highly active catalyst consisted of high ratio of isolated copper ions inside the shell of the hollow spheres.


  • We fabricated copper on supported hollow silica-alumina composite sphere catalyst.

  • The catalyst showed higher nitrous oxide conversion than the fine particle catalyst.

  • The catalyst activity was significantly improved by adjusting impregnation temperature.

  • The highly active catalyst included high ratio of isolated copper ions in the hollow sphere shell.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Saravanamurugan S, Palanichamy M, Arabindoo B, Murugesan V (2004) J Mol Catal A 218:101–106

    CAS  Article  Google Scholar 

  2. 2.

    Serrano DP, van Grieken R, Melero JA, García A, Vargas C (2010) J Mol Catal A 318:68–74

    CAS  Article  Google Scholar 

  3. 3.

    Wang Y, Guo LF, Ling Y, Liu YM, Li XH, Wu HH, Wu P (2010) Appl Catal A 379:45–53

    CAS  Article  Google Scholar 

  4. 4.

    Qiao QW, Wang RJ, Gou ML, Yang XX (2014) Microporous Mesoporous Mater 195:250–257

    CAS  Article  Google Scholar 

  5. 5.

    Lacheen HS, Iglesia E (2005) J Catal 230:173–185

    CAS  Article  Google Scholar 

  6. 6.

    Li XF, Shen BJ, Xu CM (2010) Appl Catal A 375:222–229

    CAS  Article  Google Scholar 

  7. 7.

    Li XM, Han DZ, Wang H, Liu GB, Wang B, Li Z, Wu JH (2015) Fuel 144:9–14

    CAS  Article  Google Scholar 

  8. 8.

    Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya S, Kagawa S (1986) J Chem Soc Chem Commun: 1272–1273.

  9. 9.

    Pârvulescu VI, Grange P, Delmon B (2001) Appl Catal B 33:223–237

    Article  Google Scholar 

  10. 10.

    De Lucas A, Valverde JL, Dorado F, Romero A, Asencio I (2005) J Mol Catal A 225:47–58

    Article  Google Scholar 

  11. 11.

    Bin F, Song CL, Lv G, Song JO, Wu SH, Li XD (2014) Appl Catal B 150–151: 532–543.

  12. 12.

    Salazar M, Becker R, Grünert W (2014) Appl Catal B 165:316–327

    Article  Google Scholar 

  13. 13.

    Kögel M, Sandoval VH, Schwieger W, Tissler A, Turek T (1998) Chem Eng Technol 21:655–658

    Article  Google Scholar 

  14. 14.

    Wang J, Mizuno N, Misono M (1998) Bull Chem Soc Jpn 71:947–954

    CAS  Article  Google Scholar 

  15. 15.

    Palella BI, Cadoni M, Frache A, Pastore HO, Pirone R, Russo G, Coluccia S, Marchese L (2003) J Catal 217:100–106

    CAS  Google Scholar 

  16. 16.

    Tsai M-L, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI (2014) J Am Chem Soc 136:3522–3529

    CAS  Article  Google Scholar 

  17. 17.

    Zou W, Xie PF, Hua WM, Wang YD, Kong DJ, Yue YH, Ma Z, Yang WM, Gao Z (2014) J Mol Catal A 394:83–88

    CAS  Article  Google Scholar 

  18. 18.

    Centi G, Perathoner S, Torre T, Verduna MG (2000) Catal Today 55:61–69

    CAS  Article  Google Scholar 

  19. 19.

    Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Appl Catal B 51:165–170

    CAS  Article  Google Scholar 

  20. 20.

    El-Bahy ZM, Mohamed MM, Zidan FI, Thabet MS (2008) J Hazard Mater 153:364–371

    CAS  Article  Google Scholar 

  21. 21.

    Umegaki T, Imamura S, Toyama N, Kojima Y (2014) Microporous Mesoporous Mater 196:349–353

    CAS  Article  Google Scholar 

  22. 22.

    Toyama N, Inoue H, Ohki S, Tansho M, Shimizu T, Umegaki T, Kojima Y (2016) Adv Mater Lett 7:339–343

    CAS  Article  Google Scholar 

  23. 23.

    Toyama N, Ohki S, Tansho M, Shimizu T, Umegaki T, Kojima Y (2016) Jpn Inst Energy 95:480–486

    CAS  Article  Google Scholar 

  24. 24.

    Ravishankara AR, Daniel JS, Portmann RW (2009) Science 326:123–125

    CAS  Article  Google Scholar 

  25. 25.

    Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Appl Catal B 16:359–374

    CAS  Article  Google Scholar 

  26. 26.

    Moretti G, Dossi C, Fusi A, Recchia S, Psaro R (1999) Appl Catal B 20:67–73

    CAS  Article  Google Scholar 

  27. 27.

    Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    CAS  Article  Google Scholar 

  28. 28.

    Shimizu KI, Maruyama R, Hatamachi T, Kodama T (2007) J Phys Chem C 111:6440–6446

    CAS  Article  Google Scholar 

  29. 29.

    Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Angew Chem Int Ed 40:4570–4590

    CAS  Article  Google Scholar 

  30. 30.

    Wang YM, Wu ZY, Shi LY, Zhu JH (2005) Adv Mater 17:323–327

    CAS  Article  Google Scholar 

  31. 31.

    De Carvalho MCNA, Passos FB, Schma M (2000) Appl Catal A 193:265–276

    Article  Google Scholar 

  32. 32.

    Bennici S, Gervasini A, Ravasio N, Zaccheria F (2003) J Phys Chem B 107:5168–5176

    CAS  Article  Google Scholar 

  33. 33.

    Espinos JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzalez-Elipe ARJ (2002) J Phys Chem B 106:6921–6929

    CAS  Article  Google Scholar 

  34. 34.

    Jirka I, Bosacek V (1991) Zeolites 11:77–80

    CAS  Article  Google Scholar 

Download references


This work was supported by microstructural characterization platform of University of Tokyo as a program of “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful to Mr. Ito for TEM measurement support.

Author information



Corresponding author

Correspondence to Tetsuo Umegaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Umegaki, T., Katori, H., Otake, K. et al. Fabrication of copper supported on hollow silica–alumina composite spheres for catalytic decomposition of nitrous oxide. J Sol-Gel Sci Technol 92, 715–722 (2019). https://doi.org/10.1007/s10971-019-05117-w

Download citation


  • Copper supported catalyst
  • Hollow silica–alumina composite spheres
  • Decomposition of nitrous oxide
  • Isolated copper species
  • Impregnation temperature