Skip to main content
Log in

Superparamagnetic cobalt-substituted copper zinc ferrialuminate: synthesis, morphological, magnetic and dielectric properties investigation

  • Original Paper: Sol−gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The cobalt-substituted copper zinc ferrite (Cu0.3Zn0.7−xCoxFeAlO4, CZC ferrite) was chemically synthesized by the sol−gel methodology. The phase identification, crystal structure change confirmation, morphology analysis, and magnetic evolution of samples have been studied. The X-ray diffraction and vibrating sample magnetometer (VSM) were used for structural and magnetic studies of the prepared CZC ferrite samples. The cation distribution carried out from X-ray analysis confirms the occupancy of Fe3+, Zn2+ and Cu2+ on tetrahedral sites and Fe3+, Cu2+, Al3+ and Co2+ on octahedral sites in the crystal lattice. The spherical-shaped nanoparticles of 22−32 nm were observed from TEM images, and the nanocrystallinity of particles was confirmed from HRTEM. Hysteresis curves of the CZC demonstrate modifications in coercivity, magnetization and magnetic remanence with Co2+ ions doping in CZC systems. All the samples show soft magnetic behavior. For x = 0.3, lower values of Hc and Mr indicate super-paramagnetic nature. The dielectric behavior of CZC system was analyzed with frequency variation of real and imaginary portion of dielectric constant. The effects of multi-elementals like Cu, Zn, Co, and Al on ferrite are studied in this paper. The transition of ferrite from ferrimagnetic to superparamagnetic is observed in this study.

Highlights

  • The cobalt-substituted copper zinc ferrite was prepared by the sol−gel auto-combustion method.

  • The cobalt-substituted copper zinc shows transition from ferrimagnetic to superparamagnetic.

  • The coercivity and remanence approaches very low values, showing superparamagnetic nature of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arifin D, Aston VJ, Liang X, McDaniel AH, Weimer W (2012) CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting. Energy Env Sci 5:9438

    CAS  Google Scholar 

  2. Harish KN, BhojyaNaik HS, Kumar PNP, Viswanath R (2012) Synthesis, enhanced optical and photocatalytic study of Cd-Zn ferrites under sunlight. Catal Sci Technol 2:1033

    CAS  Google Scholar 

  3. Ji R, Cao C, Chen Z, Zhai H, Bai J (2014) Solvothermal synthesis of CoxFe3-xO4 sphares and their microwave absorption properties. J Mater Chem C 2:5944

    CAS  Google Scholar 

  4. Muscas G, Yaacoub N, Concas G, Sayed F, Hussan RS, Greneche JM, Cannas C, Musinu A, Foglietti V, Casciardi S, Sangregorio C, Peddis D (2015) Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale 7:13576

    CAS  Google Scholar 

  5. Hu W, Qin N, Wu G, Lin Y, Li S, Bao D (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J A Chem Soc 134:14658

    CAS  Google Scholar 

  6. Moghaddam FM, Tavakoli G, Aliabadi A (2015) Application of nickel ferrite and cobalt ferrite magnetic nanoparticles in C–O bond formation: a comparative study between their catalytic activities. RSC Adv 5:59142

    CAS  Google Scholar 

  7. Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202

    CAS  Google Scholar 

  8. Rodrigues ARO, Ramos JMF, Gomes IT, Almeida BG, Queiroz MJRP, Coutinho PJG, Castanheira EMS (2016) Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs RSC Adv 6:17302

    CAS  Google Scholar 

  9. Zhu W, Wang L, Zhao R, Ren J, Lu G, Wang Y (2011) Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals. Nanoscale 3:2862

    CAS  Google Scholar 

  10. Gore SK, Mane RS, Naushad M, Jadhav SS, Zate MK, Alothman ZA, Hui KN (2015) Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans 44:6384

    CAS  Google Scholar 

  11. Singh C, Goyal A, Singhal S (2014) Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6:7959

    CAS  Google Scholar 

  12. Mameli V, Musinu A, Ardu A, Ennas G, Peddis D, Niznansky D, Sangregorio C, Innocenti C, Thanh NTK, Cannas C (2016) Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8:10124

    CAS  Google Scholar 

  13. Dar MA, Majid K, Najar MH, Kotnala RK, Shah J, Dhavan SK, Farukh M (2017) Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications. Phys Chem Chem Phys 19:10629

    CAS  Google Scholar 

  14. Sedlacik M, Pavlinek V, Peer P, Filip P (2014) Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature. Dalton Trans 43:6919

    CAS  Google Scholar 

  15. Datt G, Kotabage C, Abhyankar AC (2017) Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly (vinyl alcohol) composites. Phys Chem Chem Phys 19:20699S

    Google Scholar 

  16. Hahn BP, Long JW, Mansour AN, Pettigrew KA, Osofsky MS, Rolison DR (2011) Electrochemical Li-ion storage in defect spinel iron oxides: the critical role of cation vacancies. Energy Environ Sci 4:1495

    CAS  Google Scholar 

  17. Gore SK, Jadhav SS, Tumberphale UB, Shaikh SM, Naushad M, Mane RS (2017) Cation distribution, magnetic properties and cubic-perovskite phase transition in bismuth-doped nickel ferrite. Solid State Sci 74:88

    CAS  Google Scholar 

  18. Pandit R, Sharma KK, Kaur P, Kotnala RK, Shah J, Kumar R (2014) Effect of Al3+ substitution on structural, cation distribution, electrical and magnetic properties of CoFe2O4. J Phys Chem Solid 75:558

    CAS  Google Scholar 

  19. Aziz HS, Rasheed S, Khan RA, Rahim A, Nisar J, Shah SM, Iqbal F, Khan AR (2016) Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv 6:6589

    CAS  Google Scholar 

  20. Muhich CL, Ehrhart BD, Witte VA, Miller SL, Coker EN, Musgrave CS, Weimer AW (2015) Predicting the solar thermochemical water splitting ability and reaction mechanism of metal oxides: a case study of the hercynite family of water splitting cycles. Energy Environ Sci 8:3687

    CAS  Google Scholar 

  21. Gabal MA, Abdel-Daiem AM, Al Angari YM, Ismail IM (2013) Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. J Poly 57:105

    CAS  Google Scholar 

  22. Raghavender AT, Jadhav KM (2009) Dielectric properties of Al-substituted Co ferrite nanoparticles. Bull Mater Sci 6:575

    Google Scholar 

  23. Jadhav SS, Shirsath SE, Toksha BG, Shukla SJ, Jadhav KM (2008) Effect of cation proportion on the structural and magnetic properties of Ni-Zn ferrites nano-size particles prepared by co-precipitation technique. Chin J Chem Phys 21:381

    CAS  Google Scholar 

  24. Elshahawy AM, Mahmoud MH, Makhlouf SA, Hamdeh HH (2015) Role of Cu2+ substitution on the structural and magnetic properties of Ni-ferrite nanoparticles synthesized by the microwave-combustion method. Ceram Int 9:11264

    Google Scholar 

  25. Awati VV, Rathod SM, Shirsat SE, Mane ML (2013) Fabrication of Cu2+ substituted nanocrystalline Ni–Zn ferrite by solution combustion route: investigations on structure, cation occupancy and magnetic behavior. J Alloy Comp 553:157

    CAS  Google Scholar 

  26. Gore SK, Tumberphale UB, Jadhav SS, Kawale RS, Naushad M, Mane RS (2018) Microwave-assisted synthesis and magneto-electrical properties of Mg-Zn ferrimagnetic oxide nanostructures. Phys B: Phys Cond Matt 530:177

    CAS  Google Scholar 

  27. Patange SM, Desai SS, Meena SS, Yusuf SM, Shirsath SE (2015) Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn2+–Ti4+ ion substituted CoFe2O4. RSC Adv 5:91482

    CAS  Google Scholar 

  28. Zare S, Ati AA, Dabagh S, Roshan RM, Othaman Z (2015) Synthesis, structural and magnetic behavior studies of Zn-Al substituted cobalt ferrite nanoparticles. J Mol Struct 25:1089

    Google Scholar 

  29. Mugutkar AB, Gore SK, Mane RS, Batoo KM, Adil SF, Jadhav SS (2018) Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.08.255

    CAS  Google Scholar 

  30. Nikam DS, Jadhav SV, Khot VM, Bohara RA, Hong CK, Mali SS, Pawar SH (2015) Cation distribution, structural, morphological and magnetic properties of Co1-xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv 5:2338

    CAS  Google Scholar 

  31. Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1- xZnxFe2O4, ferrites. Phys B 407:795

    CAS  Google Scholar 

  32. Lakhani VK, Pathak TK, Vasoya NH, Modi KB (2011) Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci 13:539

    CAS  Google Scholar 

  33. Zaki HM, Al-Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Comp 633:104

    CAS  Google Scholar 

  34. Wahba AM, Mohamed MB, Imam NG (2016) Correlating structural, magnetic, and luminescence properties with the cation distribution of Co0.5Zn0.5+xFe2–xO4 nanoferrite. J Magn Magn Mater 408:51

    CAS  Google Scholar 

  35. Zhang ZJ, Wang ZL, Chakoumakos BC, Yin JS (1998) Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals. J Am Chem Soc 120:1800

    CAS  Google Scholar 

  36. Gore SK, Jadhav SS, Jadhav VV, Patange SM, Naushad M, Mane RS, Kim KH (2017) The structural and magnetic properties of dual phase cobalt ferrite. Sci Rep 7:2524

    Google Scholar 

  37. Singhal S, Chandra K (2007) Cation distribution and magnetic properties in chromium-substituted nickel ferrites prepared using aerosol route. J Solid State Sci 180:296

    CAS  Google Scholar 

  38. Patange SM, Shirsath SE, Toksha BG, Jadhav SS, Shukla SJ, Jadhav KM (2009) Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites. Appl Phys A 95:429

    CAS  Google Scholar 

  39. Singhel S, Singh J, Barthwal SK, Chandra K (2005) Preparation and characterization of nanosize nickel-substituted cobalt ferrites (Co1-xNixFe2O4). J Solid State Chem 178:3183

    Google Scholar 

  40. Rashad MM, Mohamed RM, Ibrahim MA, Ismial LFM, Abdel-Aal EA (2012) Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv Powd Tech 23:315–323

    CAS  Google Scholar 

  41. Sultan M, Singh R (2009) Magnetization and crystal structure of RF- sputtered nanocrystalline CuFe2O4 thin films. Mater Lett 63:1764–1766

    CAS  Google Scholar 

  42. Sattar AA, Wafik AH, El- Shokrofy KM, El-Tabby MM (1999) Magnetic properties of Cu-Zn ferrites doped with rare earth oxides. Phys Stat Sol (a) 171:563–569

    CAS  Google Scholar 

  43. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater 320:2774

    CAS  Google Scholar 

  44. Pawar DK, Pawar SM, Patil PS, Kolekar SS (2011) Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J Alloy Comp 8:3587

    Google Scholar 

  45. Mozaffari M, Shatooti S, Jafarzadeh M, Niyaifar M, Aftabi A, Mohammadpour H, Amiri S (2015) Synthesis of Zn2+ substituted maghemite nanoparticles and investigation of their structural and magnetic properties. J Magn Magn Mater 382:366

    CAS  Google Scholar 

  46. Hajihashei H, Kameli P, Salamati H (2012) The effect of EDTA on the synthesis of Ni ferrite nanoparticles. J Super Nov Magn 25:2357

    Google Scholar 

  47. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273

    CAS  Google Scholar 

  48. Sankpal AM, Suryavanshi SS, Kakatkar SV, Tengshe GG, Patil RS, Chaudhari ND, Sawant SR (1998) Magnetization studies on aluminium and chromium substituted Ni−Zn ferrites. J Magn Magn Mater 186:349

    CAS  Google Scholar 

  49. Shirsath SE, Toksha BG, Kadam RH, Patange SM, Mane DR, Jangam GS, Ghasemi A (2010) Doping effect of Mn2 + on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J Phys Chem Soli 71:1669

    CAS  Google Scholar 

  50. Chae KP, Lee JG, Kweon HS, Lee YB (2004) The crystallographic, magnetic properties of Al, Ti doped CoFe2O4 powders grown by sol–gel method. J Magn Magn Mater 283:103

    CAS  Google Scholar 

  51. Shinde UB, Shirsath SE, Patange SM, Jadhav SP, Jadhav KM, Patil VL (2013) Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram Int 39:5227

    CAS  Google Scholar 

  52. Dimitrov DA, Wysin GM (1994) Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50−xZn0.50−xMn2xFe2O4 ferrite prepared by the citrate–nitrate precursor method. Phys Rev B 50:5

    Google Scholar 

  53. Vestal CR, Zhang ZJ (2003) Dielectric properties of Mn-substituted Ni–Zn ferrites. J Am Chem Soc 125:9829

    Google Scholar 

  54. Kamble RB, Varade V, Ramesh KP, Prasad V (2015) Domain size correlated magnetic properties and electrical impedance of size dependent nickel ferrite nanoparticles. AIP Adv 5:017119

    Google Scholar 

  55. Qu Y, Yang H, Yang N, Fan Y, Zhu H, Zou G (2006) The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mat Lett 60:3548

    CAS  Google Scholar 

  56. Zeng H, Sun S, Sandstrom RL, Murray CB (2003) Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater 266:227

    CAS  Google Scholar 

  57. Hochepied JF, Pileni MP (2000) Magnetic properties of mixed cobalt-zinc ferrite nanoparticles. J Appl Phys 87:5

    Google Scholar 

  58. Rondinone AJ, Samia ACS, Zhang ZJ (1999) Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallines. J Phys Chem B 103:6876

    CAS  Google Scholar 

  59. Liu C, Zhang ZJ (2001) Size–dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles. Chem Mater 13:2092

    CAS  Google Scholar 

  60. Sing AK, Goel TC, Maediratta RG, Thakur OP, Prakash C (2002) Dielectric properties of Mn-substituted Ni-Zn ferrites. J Appl Phys 19:6626

    Google Scholar 

  61. Jadhav SS, Shirsath SE, Toksha BG, Shengule DR, Jadhav KM (2008) Structural and dielectric properties of Ni-Zn ferrite nanoparticles prepared by co-precipitation method. J Opto Adv Mater 10:2644

    CAS  Google Scholar 

  62. Gul IH, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloy Comp 465:227

    CAS  Google Scholar 

  63. Gul IH, Abbasi AZ, Amin F, Rehman MA, Maqsood (2007) A structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311:494

    CAS  Google Scholar 

  64. Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. S. Mane or Shyam K. Gore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navgare, D.L., Kawade, V.B., Tumberphale, U.B. et al. Superparamagnetic cobalt-substituted copper zinc ferrialuminate: synthesis, morphological, magnetic and dielectric properties investigation. J Sol-Gel Sci Technol 93, 633–642 (2020). https://doi.org/10.1007/s10971-019-05106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05106-z

Keywords

Navigation