Skip to main content

Advertisement

Log in

Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, pristine ZnO, TiO2, hexagonal-ZnTiO3, and cubic-Zn2Ti3O8 nanoparticles were synthesized by varying the molar ratio of ZnO/TiO2 by sol–gel method assisted with calcinations at 500 °C for 2 h in air. Compared with the pristine phase of zincite (ZnO) and anatase/rutile (TiO2), hybrid nanostructures with 3ZnO:1TiO2 (3ZT) that retain zincite and c-Zn2Ti3O8 demonstrated a higher photocatalytic activity (~82% degradation within 45 min). 3ZT photocatalyst that has been loaded with 10 wt% g-C3N4 has further enhanced visible-light photocatalytic activity performance up to ~99% degradation within 45 min under sunlight illumination. The bandgap energy of 2.5 eV, the formation of a heterojunction of 10g-C3N4/-3ZnO-c-Zn2Ti3O8, crystalline nature of the phases, and high quantity of surface OH resulted in higher adsorption of organic molecules, causing a substantial improvement in degradation of methylene blue (MB) from ~1.8 to 2.2% per min, which in turn was ~70% better than other reported work.

Highlights

  • Tremendous improvements in photocatalytic efficiency up to ~99% under sunlight irradiation are achieved by the new photocatalyst with formulation of 10g-C3N4/-3ZnO-c-Zn2Ti3O8.

  • The implication of various crystal structures (h-ZnTiO3, c-Zn2Ti3O8, ZnO, anatase, and rutile TiO2) on the formation of a heterojunction and changes in bandgap energy for better charge carrier separation to improve photocatalytic activity is elucidated.

  • h+ and OH were identified as the dominant reactive species in removal of MB by 10g-C3N4/-3ZnO-c-Zn2Ti3O8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

ZAD:

zinc acetate dihydrate

XRD:

X-ray diffraction

FESEM:

field-emission scanning electron microscope

DRS:

diffuse reflectance spectra

TA-PL:

terephthalic acid with photoluminescence

XPS:

X-ray photospectroscopy

HRTEM:

high-resolution transmission electron microscopy

MB:

methylene blue

References

  1. Nyamukamba P, Tichagwa L, Okoh O, Petrik L (2018) Visible active gold/carbon co-doped titanium dioxide photocatalytic nanoparticles for the removal of dyes in water. Mater Sci Semicond Process 76:25–30

    CAS  Google Scholar 

  2. Efstratiou A, Ongerth JE, Karanis P (2017) Waterborne transmission of protozoan parasites: review of worldwide outbreaks-an update 2011–2016. Water Res 114:14–22

    Google Scholar 

  3. Esenceli N, Tiyek İ (2014) Investigation of New Techniques Used in the Removal of Dyes in Textile Wastewater. J Selcuk Univ Natural Appl Sci 2014:436–446

  4. Kaur J, Bansal S, Singhal S (2013) Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Phys B: Condens Matter 416:33–38

    CAS  Google Scholar 

  5. Znad H, Abbas K, Hena S, Awual MR (2018) Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J Environ Chem Eng 6(1):218–227

    CAS  Google Scholar 

  6. Kumar K, Singh GK, Dastidar M, Sreekrishnan T (2014) Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater. Water Resour Ind 5:1–8

    CAS  Google Scholar 

  7. Zhou C, Lai C, Huang D, Zeng G, Zhang C, Cheng M, Hu L, Wan J, Xiong W, Wen M (2018) Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl Catal B: Environ 220:202–210

    CAS  Google Scholar 

  8. Zhou C, Lai C, Xu P, Zeng G, Huang D, Zhang C, Cheng M, Hu L, Wan J, Liu Y (2018) In situ grown AgI/Bi12O17Cl2 heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism. ACS Sustain Chem Eng 6(3):4174–4184

    CAS  Google Scholar 

  9. Tian Y, Huang L, Zhou X, Wu C (2012) Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions. J Hazard Mater 225-226(Supplement C):15–20. https://doi.org/10.1016/j.jhazmat.2012.04.057

    Article  CAS  Google Scholar 

  10. Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L, Wu Z, Jiang L, Li H (2015) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction. J Hazard Mater 286:187–194

    CAS  Google Scholar 

  11. Cheng M, Zeng G, Huang D, Lai C, Liu Y, Zhang C, Wan J, Hu L, Zhou C, Xiong W (2018) Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Res 138:7–18

    CAS  Google Scholar 

  12. Qian X, Ren M, Zhu Y, Yue D, Han Y, Jia J, Zhao Y (2017) Visible light assisted heterogeneous fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environ Sci Technol 51(7):3993–4000

    CAS  Google Scholar 

  13. Fu Y, Sun L, Yang H, Xu L, Zhang F, Zhu W (2016) Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH 2-MIL-125 (Ti). Appl Catal B: Environ 187:212–217

    CAS  Google Scholar 

  14. Zhou C, Lai C, Xu P, Zeng G, Huang D, Li Z, Zhang C, Cheng M, Hu L, Wan J (2018) Rational design of carbon-doped carbon nitride/Bi12O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline. ACS Sustain Chem Eng 6(5):6941–6949

    CAS  Google Scholar 

  15. Sethi D, Sakthivel R (2017) ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli. Vol 168. https://doi.org/10.1016/j.jphotobiol.2017.02.005

    CAS  Google Scholar 

  16. Cai H, Yang X, Zhang W, Li H, Qiu Y, Xu N, Wu J, Sun J (2017) Enhanced light absorption and quenched photoluminescence resulting in photoactive poly (3-hexyl-thiophene)-covered ZnO/TiO2 nanotubes for high light harvesting efficiency. Sol Energy Mater Sol Cells 162:47–54

    CAS  Google Scholar 

  17. Moussa H, Girot E, Mozet K, Alem H, Medjahdi G, Schneider R (2016) ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B: Environ 185:11–21

    CAS  Google Scholar 

  18. Hou D, Goei R, Wang X, Wang P, Lim T-T (2012) Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation. Appl Catal B: Environ 126:121–133

    CAS  Google Scholar 

  19. Gouvea CA, Wypych F, Moraes SG, Duran N, Nagata N, Peralta-Zamora P (2000) Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40(4):433–440

    CAS  Google Scholar 

  20. Wang L, Fu X, Han Y, Chang E, Wu H, Wang H, Li K, Qi X (2013) Preparation, characterization, and photocatalytic activity of TiO2/ZnO nanocomposites. J Nanomater 2013:15

    Google Scholar 

  21. Cai H, You Q, Hu Z, Duan Z, Cui Y, Sun J, Xu N, Wu J (2014) Fabrication and correlation between photoluminescence and photoelectrochemical properties of vertically aligned ZnO coated TiO2 nanotube arrays. Sol Energy Mater Sol Cells 123:233–238

    CAS  Google Scholar 

  22. Marimuthu T, Anandhan N, Thangamuthu R, Mummoorthi M, Ravi G (2016) Synthesis of ZnO nanowire arrays on ZnO TiO2 mixed oxide seed layer for dye sensitized solar cell applications. J Alloy Compd 677:211–218

    CAS  Google Scholar 

  23. Choi D, Ham S, Jang D-J (2018) Visible-light photocatalytic reduction of Cr (VI) via carbon quantum dots-decorated TiO2 nanocomposites. J Environ Chem Eng 6(1):1–8

    CAS  Google Scholar 

  24. Al-Hilli S, Willander M (2006) Optical properties of zinc oxide nano-particles embedded in dielectric medium for UV region: numerical simulation. J Nanopart Res 8(1):79

    CAS  Google Scholar 

  25. Tahir K, Nazir S, Li B, Khan AU, Khan ZUH, Ahmad A, Khan FU (2015) An efficient photo catalytic activity of green synthesized silver nanoparticles using Salvadora persica stem extract. Sep Purif Technol 150(Supplement C):316–324. https://doi.org/10.1016/j.seppur.2015.07.012

    Article  CAS  Google Scholar 

  26. Hussein AM, Mahoney L, Peng R, Kibombo H, Wu C-M, Koodali RT, Shende R (2013) Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. J Renew Sustain Energy 5(3):033118

    Google Scholar 

  27. Yao Y, Qin J, Chen H, Wei F, Liu X, Wang J, Wang S (2015) One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J Hazard Mater 291:28–37

    CAS  Google Scholar 

  28. Yang Y, Zhao H, Yang H, Qiu P, Zhou B, Zhang N (2018) In situ fabrication of reduced graphene oxide/mesoporous g-C3N4 nanosheets with excellent visible light activity. J Environ Chem 6(1):890–897

    CAS  Google Scholar 

  29. Zang Y, Li L, Xu Y, Zuo Y, Li G (2014) Hybridization of brookite TiO2 with gC3N4: a visible-light-driven photocatalyst for As3+ oxidation, MO degradation and water splitting for hydrogen evolution. J Mater Chem A 2(38):15774–15780

    CAS  Google Scholar 

  30. Liu W, Wang M, Xu C, Chen S (2012) Facile synthesis of gC3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem Eng J 209:386–393

    CAS  Google Scholar 

  31. Tian J, Chen L, Yin Y, Wang X, Dai J, Zhu Z, Liu X, Wu P (2009) Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange. Surf Coat Technol 204(1):205–214

    CAS  Google Scholar 

  32. Lam S-M, Sin J-C, Abdullah AZ, Mohamed AR (2015) Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J Colloid Interface Sci 450:34–44

    CAS  Google Scholar 

  33. Mengting L, Baoxiang J (2015) Synthesis and photoluminescence properties of ZnTiO3: Eu3+ red phosphors via sol-gel method. J Rare Earths 33(3):231–238

    Google Scholar 

  34. Zhang D (2013) Effectiveness of photodecomposition of rhodamine B and malachite green upon coupled tricomponent TiO2 (Anatase-Rutile)/ZnO nanocomposite. Acta Chim Slov 6(2):245–255

    CAS  Google Scholar 

  35. Xu H, Li G, Zhu G, Zhu K, Jin S (2015) Enhanced photocatalytic degradation of rutile/anatase TiO2 heterojunction nanoflowers. Catal Commun 62:52–56

    CAS  Google Scholar 

  36. Arin J, Thongtem S, Phuruangrat A, Thongtem T (2017) Template synthesis of Zn2TiO4 and Zn2Ti3O8 nanorods by hydrothermal-calcination combined processes. Mater Lett 193:270–273

    CAS  Google Scholar 

  37. Yamaguchi O, Morimi M, Kawabata H, Shimizu K (1987) Formation and transformation of ZnTiO3. J Am Ceramic Soc 70(5):C-97–C-98

    Google Scholar 

  38. Nolan NT, Seery MK, Pillai SC (2011) Crystallization and phase-transition characteristics of sol− gel-synthesized zinc titanates. Chem Mater 23(6):1496–1504

    CAS  Google Scholar 

  39. Wang L, Kang H, Xue D, Liu C (2009) Low-temperature synthesis of ZnTiO3 nanopowders. J Cryst Growth 311(3):611–614

    CAS  Google Scholar 

  40. Bidier SA, Hashim M, Al-Diabat AM, Bououdina M (2017) Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition. Phys E: Low-Dimens Syst Nanostruct 88:169–173

    CAS  Google Scholar 

  41. Kumari R, Sahai A, Goswami N (2015) Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Prog Nat Sci: Mater Int 25(4):300–309

    CAS  Google Scholar 

  42. Torrent J, Barron V (2008) Diffuse reflectance spectroscopy. Methods Soil Anal Part 5:367–387

    CAS  Google Scholar 

  43. Cheng C, Amini A, Zhu C, Xu Z, Song H, Wang N (2014) Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Sci Rep 4:4181

    Google Scholar 

  44. Whang T-J, Huang H-Y, Hsieh M-T, Chen J-J (2009) Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue. Int J Mol Sci 10(11):4707–4718

    CAS  Google Scholar 

  45. Qu Y, Zhou W, Ren Z, Wang G, Jiang B, Fu H (2014) Facile synthesis of porous Zn2Ti3O8 nanorods for photocatalytic overall water splitting. ChemCatChem 6(8):2258–2262

    CAS  Google Scholar 

  46. Cheng C, Li W, Wong T-L, Ho KM, Fung KK, Wang N (2010) Zn2TiO4− ZnO nanowire axial heterostructures formed by unilateral diffusion. J Phys Chem C 115(1):78–82

    Google Scholar 

  47. Wang C-L, Hwang W-S, Ko H-H, Hsi C-S, Chang K-M, Wang M-C (2014) Phase transformation and microstructure of Zn2Ti3O8 nanocrystallite powders prepared using the hydrothermal process. Metall Mater Trans A 45(1):250–260

    CAS  Google Scholar 

  48. Yuan X, Zhou C, Jing Q, Tang Q, Mu Y, Du A-k (2016) Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium (VI) under visible light. Nanomaterials 6(9):173

    Google Scholar 

  49. Xiu Z, Bo H, Wu Y, Hao X (2014) Graphite-like C3N4 modified Ag3PO4 nanoparticles with highly enhanced photocatalytic activities under visible light irradiation. Appl Surf Sci 289:394–399

    CAS  Google Scholar 

  50. Milošević MD, Logar MM, Poharc-Logar AV, Jakšić NL (2013) Orientation and optical polarized spectra (380–900 nm) of methylene blue crystals on a glass surface. Int J Spectrosc 2013:1–6

    Google Scholar 

  51. Lu Z, Zeng L, Song W, Qin Z, Zeng D, Xie C (2017) In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl Catal B: Environ 202:489–499

    CAS  Google Scholar 

  52. Xing H, Ma H, Fu Y, Xue M, Zhang X, Dong X, Zhang X (2015) Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity. Mater Technol 30(2):122–127

    CAS  Google Scholar 

  53. Wu L, Wu P, Zhu Y, Zhu N, Dang Z (2016) Preparation and characterization of ZnTiO3–TiO2/pillared montmorillonite composite catalyst for enhanced photocatalytic activity. Res Chem Intermed 42(6):5253–5268

    CAS  Google Scholar 

  54. Fu M, Liao J, Dong F, Li H, Liu H (2014) Growth of g-C3N4 layer on commercial TiO2 for enhanced visible light photocatalytic activity. J Nanomater 2014:1–8

  55. Štrbac D, Aggelopoulos CA, Štrbac G, Dimitropoulos M, Novaković M, Ivetić T, Yannopoulos SN (2018) Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process Saf Environ Prot 113:174–183

    Google Scholar 

  56. Yang T, Peng J, Zheng Y, He X, Hou Y, Wu L, Fu X (2018) Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites. Appl Catal B: Environ 221:223–234

    CAS  Google Scholar 

  57. Pozan GS, Kambur A (2014) Significant enhancement of photocatalytic activity over bifunctional ZnO–TiO2 catalysts for 4-chlorophenol degradation. Chemosphere 105:152–159

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Education (MOE) Malaysia for funding this work under Fundamental Research Grant Scheme (FRGS) grant no. 6071401. The authors are very much grateful to Universiti Sains Malaysia (USM) for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srimala Sreekantan or Vignesh Kumaravel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutanto, N., Saharudin, K.A., Sreekantan, S. et al. Heterojunction catalysts g-C3N4/-3ZnO-c-Zn2Ti3O8 with highly enhanced visible-light-driven photocatalytic activity. J Sol-Gel Sci Technol 93, 354–370 (2020). https://doi.org/10.1007/s10971-019-05101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05101-4

Keywords

Navigation