Skip to main content
Log in

A comparison between experimental and theoretical Ca/Si ratios in C–S–H and C–S(A)–H gels

Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The main component of the cement hydration, are both, the calcium silicate hydrate (C–S–H) and calcium silicate hydrate with Al (C–S(A)–H), whose composition is characterized by its calcium to silicon ratio (Ca/Si), which normally varies from 0.6 to 1.6. The theoretical Ca/Si ratios of the synthesized gels were compared with those of the experimental gels, which were determined by inductively coupled plasma atomic emission spectroscopy (ICP-OES). In addition, the microstructure of the gels was studied by spectroscopic techniques: infrared and Raman spectroscopy and nuclear magnetic resonance. By the double-decomposition method used in this work (1 day at 25 °C, inert atmosphere and pH = 12.3), only C–S–H and C–S(A)–H gels with a maximum Ca/Si ratio ranging from 0.8 to 1.0 were synthesized. However, the structures of the gels are slightly different as the Ca/Si ratio increases.

Calcium silicate hydrate, with and without Al has been synthetized following double decomposition method, with different Ca/Si ratio. Analyzing Ca/Si ratio of the formed compounds, indicate that C–S(A)-H with Ca/Si ratios from 0.6 to 1.1 can be formed.

Highlights

  • Calcium silicate hydrate, with and without aluminum, was synthesized by the double-decomposition method with different nominal Ca/Si ratio.

  • Ca/Si ratio ranging from 0.8 to 1.0 in the C–S–H synthesized by the double-decomposition method.

  • C–S(A)–H gel with Ca/Si ratio <0.6, cannot be synthesizes by the double-decomposition method.

  • As nominal Ca/Si ratio increases, Q1 units increases in the C–S–H gel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Richardson IG (2008) The calcium silicate hydrates. Cem Concr Res 38:137–158. https://doi.org/10.1016/j.cemconres.2007.11.005

    Article  CAS  Google Scholar 

  2. Grangeon S, Claret F, Linard Y, Chiaberge C (2013) X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Cryst B69:465–473. https://doi.org/10.1107/S2052519213021155

    Article  CAS  Google Scholar 

  3. Grangeon S, Claret F, Lerouge C, Warmont F, Sato T, Anraku S, Numako C, Linard Y, Lanson B (2013) On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite. Cem Concr Res 52:31–37. https://doi.org/10.1016/j.cemconres.2013.05.007

    Article  CAS  Google Scholar 

  4. Marty NCM, Grangeon S, Warmont F, Lerouge C (2015) Alteration of nanocrystalline calcium silicate hydrate (C-S-H) at pH 9.2 and room temperature: a combined mineralogical and chemical study. Miner Mag 97:437–458. https://doi.org/10.1180/minmag.2015.079.2.20

    Article  CAS  Google Scholar 

  5. Huang X, Jiang D, Tan S (2003) Novel hydrothermal synthesis of tobermorite fibers using Ca(II)-EDTA complex precursor, J Europ. Ceram Soc 23:123–126. https://doi.org/10.1016/S0955-2219(02)00066-3

    Article  CAS  Google Scholar 

  6. Saito F, Mi G, Hanada M (1997) Mechanochemical synthesis of hydrated calcium silicates by room temperature grinding. Solid State Ion 101-103:37–43. https://doi.org/10.1016/S0167-2738(97)84006-4

    Article  CAS  Google Scholar 

  7. Soyer-Uzun S, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2012) Compositional evolution of calcium silicate hydrate (C-S-H) structures by total X-ray scattering. J Am Ceram Soc 95:793–798. https://doi.org/10.1111/j.1551-2916.2011.04989.x

    Article  CAS  Google Scholar 

  8. Sun GK, Young JF, Kirkpatrick RJ (2006) The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res 36:18–29. https://doi.org/10.1016/j.cemconres.2005.03.002

    Article  CAS  Google Scholar 

  9. García-Lodeiro I, Fernández-Jiménez A, Sobrados I, Sanz J, Palomo A (2012) C-S-H gels: interpretation of 29Si MAS-NMR spectra. J Am Ceram Soc 95:1440–1446. https://doi.org/10.1111/j.1551-2916.2012.05091.x

    Article  CAS  Google Scholar 

  10. Cappelletto E, Borsacchi S, Geppi M, Ridi F, Fratini E, Baglioni P (2013) Comb-shaped polymers as nanostructure modifiers of calcium silicate hydrate: a 29Si solid-state NMR investigation. J Phys Chem C 117:22947–22953. https://doi.org/10.1021/jp407740t

    Article  CAS  Google Scholar 

  11. Trapote-Barreira A, Cama J, Soler JM (2014) Dissolution kinetics of C-S-H gel: flow-through experiments. Phys Chem Earth 70-71:17–31. https://doi.org/10.1016/j.pce.2013.11.003

    Article  Google Scholar 

  12. Higl J, Köhler M, Lindén M (2016) Confocal Raman microscopy as a non-destructive tool to study microstructure of hydrating cementitious materials. Cem Concr Res 88:136–143. https://doi.org/10.1016/j.cemconres.2016.07.005

    Article  CAS  Google Scholar 

  13. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519. https://doi.org/10.1016/j.cemconres.2004.04.034

    Article  CAS  Google Scholar 

  14. Haas J, Nonat S (2015) From C-S-H to C-A-S-H: experimental study and thermodynamic modelling. Cem Concr Res 68:124–138. https://doi.org/10.1016/j.cemconres.2014.10.020

    Article  CAS  Google Scholar 

  15. Kim JJ, Foley EM, Taha MMR (2013) Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C-S-H) with varying CaO/SiO2 mixture ratios. Cem Concr Comp 36:65–70. https://doi.org/10.1016/j.cemconcomp.2012.10.001

    Article  CAS  Google Scholar 

  16. L’Hôpital R, Lothenbach B, Le Saout G, Kulik D, Scrivener K (2015) Incorporation of aluminium in calcium-silicate-hydrates. Cem Concr Res 75:91–103. https://doi.org/10.1016/j.cemconres.2015.04.007

    Article  CAS  Google Scholar 

  17. L’Hôpital E, Lothenbach B, Le Saout G, Kulik D, Scrivener K (2016) Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cem Concr Res 85:111–121. https://doi.org/10.1016/j.cemconres.2016.01.014

    Article  CAS  Google Scholar 

  18. Alizadeh R, Beaudoin JJ, Raki L (2011) Mechanical properties of calcium silicate hydrates. Mat Struct 44:13–28. https://doi.org/10.1617/s11527-010-9605-9

    Article  CAS  Google Scholar 

  19. Battocchio F, Monteiro PJM, Wenk HR (2012) Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H. Cem Concr Res 42:1534–1548. https://doi.org/10.1016/j.cemconres.2012.07.005

    Article  CAS  Google Scholar 

  20. Baston GMN, Clacher AP, Heath TG, Hunter FMI, Smith V, Swanton SW (2012) Calcium silicate hydrate (C-S-H) gel dissolution and pH buffering in a cementitious near field. Miner Mag 76(8):3045–3053. https://doi.org/10.1180/minmag.2012.076.8.20

    Article  Google Scholar 

  21. Harris AW, Manning MC, Tearle WM, Tweed CJ (2002) Testing of models of the dissolution of cements-leaching of synthetic CSH gels. Cem Concr Res 32:731–746. https://doi.org/10.1016/S0008-8846(01)00748-7

    Article  CAS  Google Scholar 

  22. Tränkle S, Jahn D, Neumann T, Nicoleau L, Hüsing N, Volkmer D (2013) Conventional and microwave assisted hydrothermal syntheses of 11Å tobermorite. J Mat Chem A 1:10318–10326. https://doi.org/10.1039/c3ta11036b

    Article  CAS  Google Scholar 

  23. Feuston BP, Garofalini SH (1990) Oligomerization in silica sols. J Phys Chem 94(13):5351–5356. https://doi.org/10.1021/j100376a035

    Article  CAS  Google Scholar 

  24. Faucon P, Charpentier T, Bertrandie D, Nonat A, Virlet J, Petit JC (1998) Characterization of calcium aluminate hydrates and related hydrates of cement pastes by 27Al MQ-MAS NMR. Inorg Chem 37:3726–3733. https://doi.org/10.1021/ic9800076

    Article  CAS  Google Scholar 

  25. Andersen MD, Jakobsen HJ, Skibsted J (2003) Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR investigation. Inorg Chem 42:2280–2287. https://doi.org/10.1021/ic020607b

    Article  CAS  Google Scholar 

  26. Pardal X, Pochard I, Nonat A (2009) Experimental study of Si-Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cem Concr Res 39:637–643. https://doi.org/10.1016/j.cemconres.2009.05.001

    Article  CAS  Google Scholar 

  27. Myers RJ, L’Hôpital E, Provis JL, Lothenbach B (2015) Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cem Concr Res 68:83–93. https://doi.org/10.1016/j.cemconres.2014.10.015

    Article  CAS  Google Scholar 

  28. Sevelsted TF, Skibsted J (2015) Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 71:56–65. https://doi.org/10.1016/j.cemconres.2015.01.019

    Article  CAS  Google Scholar 

  29. Houston JR, Maxwell RS, Carroll SA (2009) Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy. Geochem Trans 10:1–14 http://www.geochemicaltransactions.com/content/10/1/1

  30. Grangeon S, Claret F, Roosz C, Sato T, Gaboreau S, Linard Y (2016) Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J Appl Cryst 49:771–783. https://doi.org/10.1107/S1600576716003885

    Article  CAS  Google Scholar 

  31. Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cem Concr Res 34:1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034

    Article  CAS  Google Scholar 

  32. Renaudin G, Russias J, Leroux F, Frizon F, Cau-dit-Coumes C (2009) Structural characterization of C–S–H and C–A–S–H samples —Part I: long-range order investigated by Rietveld analyses. J Solid State Chem 182:3312–3319. https://doi.org/10.1016/j.jssc.2009.09.026

    Article  CAS  Google Scholar 

  33. Garbevw K, Stemmermann P, Black L, Breen C, Yarwood J, Gasharova B (2007) Structural features of C-S-H(I) and its carbonation in air−a Raman spectroscopic study. Part I: Fresh Phases. J Am Ceram Soc 90:900–907. https://doi.org/10.1111/j.1551-2916.2006.01428.x

    Article  CAS  Google Scholar 

  34. Black L, Breen C, Yarwood J, Garbevw K, Stemmermann P, Gasharova B (2007) Structural features of C-S-H(I) and its carbonation in Air−a Raman spectroscopic study. Part II: carbonated phases. J Am Ceram Soc 90:908–917. https://doi.org/10.1111/j.1551-2916.2006.01429.x

    Article  CAS  Google Scholar 

  35. Masmoudi R, Kupwade-Patil K, Bumajdad A, Büyüköztürk O (2017) In situ Raman studies on cement paste prepared with natural pozzolanic volcanic ash and ordinary Portland cement. Constr Build Mat 148:444–454. https://doi.org/10.1016/j.conbuildmat.2017.05.016

    Article  CAS  Google Scholar 

  36. Ortaboy S, Li J, Geng G, Myers RJ, Monteiro PJM, Maboudian R, Carraro C (2017) Effects of CO2 and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Adv 7:48925–48933. https://doi.org/10.1039/c7ra07266j

    Article  CAS  Google Scholar 

  37. Mesbah A, Cau-dit-Coumes C, Frizon F, Leroux F, Ravaux J, Renaudin G (2011) A new investigation of the Cl-CO32− substitution in AFm phases. J Am Ceram Soc 94:1901–1910. https://doi.org/10.1111/j.1551-2916.2010.04305.x

    Article  CAS  Google Scholar 

  38. Wehrmeister U, Jacob DE, Soldati AL, Loges N, Häger T, Hofmeister W (2011) Amorphous, nanocrystalline and crystalline calcium carbonates in biologicalmaterials. J Raman Spectr 42:926–935. https://doi.org/10.1002/jrs.2835

    Article  CAS  Google Scholar 

  39. Rodríguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271. https://doi.org/10.1039/C0NR00589D

    Article  Google Scholar 

  40. Kapeluszna E, Kotwica Ł, Różycka A, Gołek Ł (2017) Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Construc Build Mat 155:643–653. https://doi.org/10.1016/j.conbuildmat.2017.08.091

    Article  CAS  Google Scholar 

  41. Mozgawa W, Sitarz M, Rokita M (1999) Spectroscopic studies of different aluminosilicate structures. J Molec Struct 511–512:251–257. https://doi.org/10.1016/S0022-2860(99)00165-9

    Article  Google Scholar 

  42. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (1999) Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82(3):742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

    Article  CAS  Google Scholar 

  43. Le Saout G, Lécolier E, Rivereau A, Zanni H (2006) Chemical structure of cement aged at normal and elevated temperatures and pressures: part I. Class G oilwell cement. Cem Concr Res 36:71–78. https://doi.org/10.1016/j.cemconres.2004.09.018

    Article  CAS  Google Scholar 

  44. Le Saoût G, Lécolier E, Rivereau A, Zanni H (2006) Chemical structure of cement aged at normal and elevated temperatures and pressures, Part II: low permeability class G oilwell cement. Cem Concr Res 36:428–433. https://doi.org/10.1016/j.cemconres.2005.11.005

    Article  CAS  Google Scholar 

  45. Pérez G, Guerrero A, Gaitero JJ, Goñi S (2014) Structural characterization of C-S-H gel through an improved deconvolution analysis of NMR spectra. J Mat Sci 49:142–152. https://doi.org/10.1007/s10853-013-7688-8

    Article  CAS  Google Scholar 

  46. Pardal X, Brunet F, Charpentier T, Pochard I, Nonat A (2012) Al-27 and Si-29 solid-state NMR characterization of calcium-cluminosilicate-hydrate. Inorg Chem 51:1827–1836. https://doi.org/10.1021/ic202124x

    Article  CAS  Google Scholar 

  47. Skibsted J, Andersen MD (2013) The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C–S–H) phase resulting from Portland cement hydration studied by 29Si MAS NMR. J Am Ceram Soc 96:651–656. https://doi.org/10.1111/jace.12024

    Article  CAS  Google Scholar 

  48. Richardson IG, Brough AR, Brydson R, Groves GW, Dobson CM (1993) Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by Si-29 and Al-27 NMR and EELS. J Am Ceram Soc 76:2285–2288. https://doi.org/10.1111/j.1151-2916.1993.tb07765.x

    Article  CAS  Google Scholar 

  49. Faucon P, Charpentier T, Nonat A, Petit JC (1998) Triple-quantum two-dimensional 27Al magic angle nuclear magnetic resonance study of the aluminum incorporation in calcium silicate hydrates. J Am Chem Soc 120:12075–12082. https://doi.org/10.1021/ja9806940

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Comunidad de Madrid and European Social Fund under the Programa GEOMATERIALES-2-2013/MIT-2914 as well as by the Spanish “Ministerio de Economía y Competitividad” (FIS2014‐52212‐R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagrario Martínez-Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Garrido, M., Teresa Molina-Delgado, M. & Martínez-Ramírez, S. A comparison between experimental and theoretical Ca/Si ratios in C–S–H and C–S(A)–H gels. J Sol-Gel Sci Technol 94, 11–21 (2020). https://doi.org/10.1007/s10971-019-05097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05097-x

Keywords

Navigation