Skip to main content
Log in

Magnetic ferroferric oxide/phenolic resin/silver core–shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

With the development of nanotechnology, the preparation method of surface-enhanced Raman scattering (SERS) substrate has made significant progress, which promotes the application of SERS in food safety, environmental protection, and medical testing. We reported on the fabrication of silver-coated magnetic Fe3O4@phenolic resin (Fe3O4@RF) core–shell particles by a facile solvothermal method, followed by deposition of high-density Ag nanoparticles onto the phenolic resin surfaces through an in-situ reduction process. Analysis of Raman spectroscopy was performed by laser Raman spectrometer. The as-synthesized Ag-coated Fe3O4@RF particles as sensitive SERS substrates showed outstanding SERS performances toward probe molecules of 4-aminothiophenolas with a detection limit of 1 × 10–9 mol L–1. Moreover, the enhancement factor of the substrate was calculated to be about 2.86 × 105. Importantly, profiting from the excellent magnetism, the signal attenuated slightly only after three cycles measurements of SERS based on such composite substrates, indicating that Fe3O4@RF@Ag magnetic composite microspheres possessed the outstanding repeatability. On the basis of these results, it is believed that such Fe3O4@RF@Ag substrates are promising for the reusable detection of toxic molecules in practical applications.

Highlights

  • The Fe3O4@RF@Ag composite microspheres were prepared by hydrothermal synthesis method.

  • The composites exhibit SERS performances with a detection limit of 1 × 10–9 mol L–1.

  • The Fe3O4@RF@Ag magnetic microspheres possess the outstanding repeatability.

  • The calculated enhancement factor of the substrate is about 2.86 × 105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  Google Scholar 

  2. Zhang X, Niu C, Wang Y, Zhou S, Liu J (2014) Gel-limited synthesis of dumbbell-like Fe3O4-Ag composite microspheres and their SERS applications. Nanoscale 6(21):12618–12625. https://doi.org/10.1039/c4nr03301a

    Article  Google Scholar 

  3. Li D, Qu L, Zhai W, Xue J, Fossey JS, Long Y(2011) Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced raman spectroscopy.Environ Sci Technol 45(9):4046–4052. https://doi.org/10.1021/es104155r

    Article  Google Scholar 

  4. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90. https://doi.org/10.1038/nbt1377

    Article  Google Scholar 

  5. Kim K, Lee JW, Shin KS (2012) Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced raman scattering and metal-enhanced fluorescence. ACS Appl Mater Interfaces 4(10):5498–5504. https://doi.org/10.1021/am3014168

    Article  Google Scholar 

  6. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37(5):1001–1011. https://doi.org/10.1039/b708461g

    Article  Google Scholar 

  7. Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661. https://doi.org/10.1021/ar800041s

    Article  Google Scholar 

  8. Ye Y, Liu H, Yang L, Liu J (2012) Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale 4(20):6442–6448. https://doi.org/10.1039/c2nr31985c

    Article  Google Scholar 

  9. Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and sers activity. J Am Chem Soc 136(23):8153–8156. https://doi.org/10.1021/ja502472x

    Article  Google Scholar 

  10. Bai T, Sun J, Che R, Xu L, Yin C, Guo Z, Gu N (2014) Controllable preparation of core-shell Au-Ag nanoshuttles with improved refractive index sensitivity and SERS activity. ACS Appl Mater Interfaces 6(5):3331–3340. https://doi.org/10.1021/am405357v

    Article  Google Scholar 

  11. Zeng J, Zhao F, Li M, Li C-H, Lee TR, Shih W-C (2015) Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications. J Mater Chem C 3(2):247–252. https://doi.org/10.1039/c4tc02328e

    Article  Google Scholar 

  12. Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thunemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132(4):1296–1301. https://doi.org/10.1021/ja906506j

    Article  Google Scholar 

  13. Braun G, Pavel I, Morrill AR, Seferos DS, Bazan GC, Reich NO, Moskovits M (2007) Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J Am Chem Soc 129(25):7760–7761. https://doi.org/10.1021/ja072533e

    Article  Google Scholar 

  14. Guo IW, Pekcevik IC, Wang MCP, Pilapil BK, Gates BD (2014) Colloidal core-shell materials with ‘spiky’ surfaces assembled from gold nanorods. Chem Commun 50(60):8157–8160. https://doi.org/10.1039/c4cc02410a

    Article  Google Scholar 

  15. Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv Funct Mater 20(17):2815–2824. https://doi.org/10.1002/adfm.201000792

    Article  Google Scholar 

  16. Bersani D, Lottici PP, Lopez T, Ding X-Z (1998) A Raman scattering study of PbTiO3 and TiO2 obtained by sol-gel. J Sol-Gel Sci Technol 13(1/2/3):849–853

    Article  Google Scholar 

  17. Liu B, Bai C, Zhao D, Liu W-L, Ren M-M, Liu Q-Z, Yang Z-Z, Wang X-Q, Duan X-L (2016) Novel ferroferric oxide/polystyrene/silver core-shell magnetic nanocomposite microspheres as regenerable substrates for surface-enhanced Raman scattering. Appl Surf Sci 364:628–635. https://doi.org/10.1016/j.apsusc.2015.12.186

    Article  Google Scholar 

  18. Bourgeat-Lami E, Lansalot M (2010) Organic/inorganic composite latexes: the marriage of emulsion polymerization and inorganic chemistry. Adv Polym Sci 233:53–123. https://doi.org/10.1007/12_2010_60

  19. Kong L, Lu X, Bian X, Zhang W, Wang C (2011) Constructing carbon-coated Fe3O4 microspheres as antiacid and magnetic support for palladium nanoparticles for catalytic applications. ACS Appl Mater Interfaces 3(1):35–42. https://doi.org/10.1021/am101077a

    Article  Google Scholar 

  20. Ma W, Xu S, Li J, Guo J, Lin Y, Wang C (2011) Hydrophilic dual-responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation-precipitation polymerization. J Polym Sci, Part A 49(12):2725–2733. https://doi.org/10.1002/pola.24705

    Article  Google Scholar 

  21. Salazar S, Guerra D, Yutronic N, Jara P (2018) Removal of aromatic chlorinated pesticides from aqueous solution using β-cyclodextrin polymers decorated with Fe3O4 nanoparticles. Polym (Basel, Switz) 10(9):1038/1031–1038/1019. https://doi.org/10.3390/polym10091038

    Google Scholar 

  22. Wang T, Hu X, Dong S (2008) A renewable SERS substrate prepared by cyclic depositing and stripping of silver shells on gold nanoparticle microtubes. Small 4(6):781–786. https://doi.org/10.1002/smll.200700888

    Article  Google Scholar 

  23. He X, Wang H, Zhang Q, Li Z, Wang X (2014) Exotic 3D hierarchical ZnO-Ag hybrids as recyclable surface-enhanced Raman scattering substrates for multifold organic pollutant detection. Eur J Inorg Chem 2014(14):2432–2439. https://doi.org/10.1002/ejic.201402014

    Article  Google Scholar 

  24. Wen G, Zhong B, Huang X, Yu H, Zhang X, Zhang T, Bai H (2010) Novel BN hollow microspheres with open mouths - Facile synthesis, growth mechanism, resonant Raman scattering effect, and cathodoluminescence performance. Eur J Inorg Chem 35:5538–5544. https://doi.org/10.1002/ejic.201000703

    Article  Google Scholar 

  25. Ren J, Tilley RD (2007) Shape-controlled growth of platinum nanoparticles. Small 3(9):1508–1512. https://doi.org/10.1002/smll.200700135

    Article  Google Scholar 

  26. Gu H, Yang Z, Gao J, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127(1):34–35. https://doi.org/10.1021/ja045220h

    Article  Google Scholar 

  27. Polte J, Tuaev X, Wuithschick M, Fischer A, Thuenemann AF, Rademann K, Kraehnert R, Emmerling F (2012) Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6(7):5791–5802. https://doi.org/10.1021/nn301724z

    Article  Google Scholar 

  28. Liu X, Atwater M, Wang J, Dai Q, Zou J, Brennan JP, Huo Q (2007) A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J Nanosci Nanotechnol 7(9):3126–3133. https://doi.org/10.1166/jnn.2007.805

    Article  Google Scholar 

  29. Ge T, Tang K, Yu Y, Tan X (2018) Preparation and properties of the 3-pentadecyl-phenol in situ modified foamable phenolic resin. Polym 10(10):1124/1121–1124/1116. https://doi.org/10.3390/polym10101124

    Google Scholar 

  30. Streckova M, Sopcak T, Medvecky L, Bures R, Faberova M, Batko I, Briancin J (2012) Preparation, chemical and mechanical properties of microcomposite materials based on Fe powder and phenol-formaldehyde resin. Chem Eng J (Amst, Neth) 180:343–353. https://doi.org/10.1016/j.cej.2011.11.036

    Article  Google Scholar 

  31. Beda A, Taberna P-L, Simon P, Matei Ghimbeu C (2018) Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 139:248–257. https://doi.org/10.1016/j.carbon.2018.06.036

    Article  Google Scholar 

  32. Wang X, Huang H, Li G, Liu Y, Huang J, Yang D-P (2014) Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants. Nanoscale Res Lett 9(1):1–5. https://doi.org/10.1186/1556-276x-9-648

    Article  Google Scholar 

  33. Baharin SNA, Sarih NM, Mohamad S (2016) Novel functionalized polythiophene-coated Fe3O4 nanoparticles for magnetic solid-phase extraction of phthalates. Polym 8(5):117/111–117/118. https://doi.org/10.3390/polym8050117

    Google Scholar 

  34. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem, Int Ed 48(32):5875–5879. https://doi.org/10.1002/anie.200901566

    Article  Google Scholar 

  35. You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X, Ding B (2012) Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. J Mater Chem 22(5):1998–2006. https://doi.org/10.1039/c1jm13211c

    Article  Google Scholar 

  36. Kang JS, Hwang SY, Lee CJ, Lee MS (2002) SERS of dithiocarbamate pesticides adsorbed on silver surface; thiram. Bull Korean Chem Soc 23(11):1604–1610. https://doi.org/10.5012/bkcs.2002.23.11.1604

    Article  Google Scholar 

  37. Sanchez-Cortes S, Vasina M, Francioso O, Garcia-Ramos JV (1998) Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vib Spectrosc 17(2):133–144. https://doi.org/10.1016/s0924-2031(98)00025-3

    Article  Google Scholar 

  38. Le RuEC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803. https://doi.org/10.1021/jp0687908

    Article  Google Scholar 

  39. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944. https://doi.org/10.1021/j150668a038

    Article  Google Scholar 

  40. Su K-H, Durant S, Steele JM, Xiong Y, Sun C, Zhang X (2006) Raman enhancement factor of a single tunable nanoplasmonic resonator. J Phys Chem B 110(9):3964–3968. https://doi.org/10.1021/jp055566u

    Article  Google Scholar 

  41. Minh N, Phuong DTT (2010) Structural and low temperature Raman scattering studies in SrTi1-xCoxO3 nanoparticles synthesized by sol-gel method. J Sol-Gel Sci Technol 56(3):264–269. https://doi.org/10.1007/s10971-010-2302-x

    Article  Google Scholar 

  42. Chiang C-Y, Liu T-Y, Su Y-A, Wu C-H, Cheng Y-W, Cheng H-W, Jeng R-J (2017) Au nanoparticles immobilized on honeycomb-like polymeric films for surface-enhanced raman scattering (SERS) detection. Polym 9(3):93/1–93/17. https://doi.org/10.3390/polym9030093

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by Shandong Province Natural Science Foundation (ZR2012EMM009 and ZR2018MEM012), the Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education/Shandong Province of China (No. KF201602), the Scientific Research Foundation for the Returned Overseas Scholars in Jinan (20100406), National Training Program of Innovation and Entrepreneurship for Undergraduates (201610431033 and 201810431008), Qilu University of Technology International Cooperation Fund (QLUTGJHZ2018025), and National Natural Science Foundations of China (31570566, 31500489, 51403111, and 51503107).

Author contributions

W-LL and F-GK supervised this research; including originality, experimental design, data analysis, and manuscript writing; Y-FW, M-MR, and S-JW assisted D-SL in all related areas. KY checked some experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Liang Liu or Fan-Gong Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DS., Liu, B., Wang, YF. et al. Magnetic ferroferric oxide/phenolic resin/silver core–shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering. J Sol-Gel Sci Technol 92, 124–133 (2019). https://doi.org/10.1007/s10971-019-05093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05093-1

Keywords

Navigation