Skip to main content
Log in

Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
  • volume 91pages 578–595 (2019)
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Cite this article

Abstract

Nickel-doped cobalt ferrite nanoparticles based on Andrographis paniculata plant extract were prepared through the microwave-assisted method. The obtained nanoparticles were analyzed using XRD, FTIR, UV-DRS, SEM with EDAX, and HRTEM with SAED. XRD exhibits a cubic lattice structure of ferrites and the lattice parameter decreases with an increase in nickel dopant. The vibrational stretching mode of the metal–oxygen bond is observed for tetrahedral and octahedral sites. The optical energy bandgap of pure CoFe2O4 nanoparticles gradually increases with nickel doping. The luminescence spectrum showed the violet, yellow, green, and orange emissions of synthesized nanoparticles. Further, photodegradation of prepared nanoparticles was assessed for the degradation of Methylene blue, Rhodamine B, Eriochrome black T, Rose bengal, and Evan’s blue dyes. Antibacterial activity of synthesized nanoparticles was tested against Gram-positive and Gram-negative bacterial strains. The antibacterial activity improved with Ni doping when compared with pure CoFe2O4 nanoparticles.

Highlights

  • Nickel-doped cobalt ferrite nanoparticles were prepared by microwave-assisted bioengineered method using Andrographis paniculata plant extract.

  • Ni-doped cobalt ferrite nanoparticles were characterized by structural, morphological, and optical studies.

  • Ni-doped cobalt ferrite nanoparticles showed promising photocatalytic activity against Methylene blue, Rhodamine B, Rose bengal, Eriochrome black T, and Evan’s blue under visible light irradiation.

  • Antibacterial activity (food-borne pathogens) of pure cobalt ferrite and Ni-doped cobalt ferrite nanoparticles is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033

    Article  Google Scholar 

  2. Hustert K, Zepp RG (1992) Photocatalytic degradation of selected azo dyes. Chemosphere 24(3):335–342

    Article  Google Scholar 

  3. Tang J, Zou Z, Yin J, Ye J (2003) Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation. Chem Phys Lett 382(1–2):175–179

    Article  Google Scholar 

  4. Andronic L, Enesca A, Cazan C, Visa M (2014) TiO2–active carbon composites for wastewater photocatalysis. J Sol-Gel Sci Technol 71:396–405

    Article  Google Scholar 

  5. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review. Applied Catalysis B: Environmental 49:1–14

    Article  Google Scholar 

  6. Andronic L, Andrasi D, Enesca A, Visa M, Duta A (2011) The influence of titanium dioxide phase composition on dyes photocatalysis. J Sol-Gel Sci Technol 58:201–208

    Article  Google Scholar 

  7. Casbeer E, Sharma VK, Li X-Z (2012) Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep Purif Technol 87:1–14

    Article  Google Scholar 

  8. Sanpo N, Tharajak J, Li Y, Berndt CC, Wen C, Wang J (2014) Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. J Nano Res 16:2510–2522

    Article  Google Scholar 

  9. Ashour AH, Ahmed I, El-Batal MIA, Maksoud A, El-Sayyad GS, Labib Sh, Abdeltwab E, El-Okr MM (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuol 40:41–151

    Article  Google Scholar 

  10. Tatarchuk TR, Paliychuk ND, Bououdina M, Al-Najar B, Pacia M, Macyk W, Shyichuk A (2018) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd 731:1256–1266

    Article  Google Scholar 

  11. Alves TEP, Pessoni HVS, Franco Jr A (2017) The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys Chem Chem Phys 19(25):16395–16405

    Article  Google Scholar 

  12. Tatarchuk T, Bououdina M, Macyk W, Shyichuk O, Paliychuk N, Yaremiy I, Al-Najar B, Pacia M (2017) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12:141–151

    Article  Google Scholar 

  13. Stein CR, Bezerra MTS, Holanda GHA, Andre-Filho J, Morais PC (2018) Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv 8:056303

    Article  Google Scholar 

  14. Melo RS, Banerjee P, Franco Jr. A (2018) Hydrothermal synthesis of nickel doped cobalt ferrite nanoparticles: optical and magnetic properties. J Mater Sci: Mater Electron 29(17):14657–14667

    Google Scholar 

  15. Fariñas JC, Moreno R, Pérez A, García MA, García-Hernández M, Salvadord MD, Borrelld A (2018) Microwave-assisted solution synthesis, microwave sintering and magnetic properties of cobalt ferrite. J Eur Ceram Soc 38(5):2360–2368

    Article  Google Scholar 

  16. Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G (2016) Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Comd 654:460–466

    Article  Google Scholar 

  17. Hankare PP, Sanadi KR, Garadkar KM, Patil DR, Mulla IS (2013) Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol-gel auto-combustion method. J Alloys Compd 553:383–388

    Article  Google Scholar 

  18. Sontu UB, Yelasani V, Musugu VRR (2015) Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self-combustion method. J Magn Magn Mater 374:376–380

    Article  Google Scholar 

  19. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10:5221–5238

    Article  Google Scholar 

  20. Rajakumar G, Thiruvengadam M, Mydhili G, Gomathi T, Chung I-M (2018) Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst Eng 41:21–30

    Article  Google Scholar 

  21. Sinha SN, Paul D (2015) Phytosynthesis of silver nanoparticles using Andrographis paniculata leaf extract and evaluation of their antibacterial activities. Spectroscopy Letters 48:600–604

    Article  Google Scholar 

  22. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2017) Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies. J Mater Sci: Mater Electron 28:7991–8001

    Google Scholar 

  23. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2017) Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett 206:217–220

    Article  Google Scholar 

  24. Lu LeT, Dung NgoT, Tung LeD, Thanh CT, Quy OK, Chuc NV, Maenosono S, Thanh NTK (2015) Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7:19596–19610

    Article  Google Scholar 

  25. Qasim M, Asghar K, Singh BR, Prathapani S, Khan W, Naqvi AH, Das D (2015) Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O4 nano-photocatalyst: structural, optical, magnetic and photocatalytic properties. Spectrochim Acta A: Molecul Biomolecul Spect 137:1348–1356

    Article  Google Scholar 

  26. Stoia M, Caizer C, Stefanescu M, Barvinschi P, Barbu-Tudoran L (2011) Characterisation of nickel–zinc ferrite/silica nanocomposites with low ferrite concentration obtained by an improved modified sol–gel method. J Sol-Gel Sci Technol 58:126–134

    Article  Google Scholar 

  27. Barati MR (2009) Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method. J Sol-Gel Sci Technol 52:171–178

    Article  Google Scholar 

  28. Sundarajan M, Sailaja V, Kennedy J, Vijaya JJ (2017) Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram Int 43(1):540–548

    Article  Google Scholar 

  29. Hema E, Manikandan A, Karthika P, Antony SA, Venkatraman BR (2015) A novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J Supercond Nov Magn 28(8):2539–2552

    Article  Google Scholar 

  30. Singh RK, Narayan A, Prasad K, Yadav RS, Pandey AC, Singh AK, Verma L, Verma RK (2012) Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J Therm Anal Calorim 110(2):573–580

    Article  Google Scholar 

  31. Nassar MY, Khatab M (2016) Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv 6(83):79688–79705

    Article  Google Scholar 

  32. Okitsu K, Iwasaki K, Yobiko Y, Bandow H, Nishimura R, Maeda Y (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem 12(4):255–262

    Article  Google Scholar 

  33. Maezono T, Tokumura M, Sekine M, Kawase Y (2011) Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82:1422–1430

    Article  Google Scholar 

  34. Sanpo N, Berndt CC, Wang J (2012) Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J Appl Phys 112:084333

    Article  Google Scholar 

  35. Bhosale SV, Ekambe PS, Bhoraskar SV, Mathe VL (2018) Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity. Appl Surf Sci 441:724–733

    Article  Google Scholar 

  36. Dom R, Subasri R, Radha K, Borse PH (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun 151(6):470–473

    Article  Google Scholar 

  37. Hou X, Feng J, Xu X, Zhang M (2010) Synthesis and characterizations of spinel MnFe2O4 nanorod by seed-hydrothermal route. J Alloys Comp 491:258–263

    Article  Google Scholar 

  38. Chen C-H, Liang Y-H, Zhang W-D (2010) ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J Alloys Compd 501(1):168–172

    Article  Google Scholar 

  39. Wang K, Yu L, Yin S, Li H, Li H (2009) Photocatalytic degradation of methylene blue on magnetically separable FePc/Fe3O4 nanocomposite under visible irradiation. Pure Appl Chem 81(12):2327–2335

    Article  Google Scholar 

  40. Patil MR, Shrivastava VS (2014) Photocatalytic degradation of carcinogenic methylene blue by using polyaniline-nickel ferrite Nano-composite. Pelagia Res Libr 5(2):8–17

    Google Scholar 

  41. Mathubala G, Manikandan A, Antony SA, Ramar P (2016) Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0–1.0) nanoparticles. J Mol Struct 1113:79–87

    Article  Google Scholar 

  42. Ghaffari M, Tan PY, Oruc ME, Tan OK, Tse MS, Shannon M (2011) Effect of ball milling on the characteristics of nano structure SrFeO3 powder for photocatalytic degradation of methylene blue under visible light irradiation and its reaction kinetics. Catal Today 161(1):70–77

    Article  Google Scholar 

  43. Singhal S, Sharma R, Singh C, Bansal S (2013) Enhanced photocatalytic degradation of methylene blue using ZnFe2O4/MWCNT composite synthesized by hydrothermal method. Ind J Mat Sci 1–6; https://doi.org/10.1155/2013/356025

  44. Kirankumar VS, Sumathi S (2018) Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. J Mater Sci: Mater Electron 29(10):8738–8746

    Google Scholar 

  45. Kooti M, Gharineh S, Mehrkhah M, Shaker A, Motamedi H (2015) Preparation and antibacterial activity of CoFe2O4/SiO2/Ag composite impregnated with streptomycin. Chem Eng J 259:34–42

    Article  Google Scholar 

  46. Allafchian A, Jalali SAH, Bahramian H, Ahmadvand H (2016) Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite. J Magn Magn Mater 404:14–20

    Article  Google Scholar 

  47. Kooti M, Kharazi P, Motamedi H (2014) Preparation and antibacterial activity of three-component NiFe2O4@PANI@Ag nanocomposite. J Mater Sci Tech 30(7):656–660

    Article  Google Scholar 

  48. Ishaq K, Saka AA, Kamardeen AO, Ahmed A, Alhassan MI, Abdullahi H (2017) Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle. Eng Sci Tech Intern J 20(2):563–569

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, M. Madhukara Naik expresses his gratitude to the University Grants Commission (UGC), New Delhi for providing RGNF (SRF-RGNF-2015-17-SC-KAR-8007) and Kuvempu University. One of the authors, Dr. G. Nagaraju thanks DST-SERB (SB/FT/CS-083/2012) Government of India, New Delhi for providing characterization techniques and the principal, Siddaganga Institute of Technology. One of the authors, Dr. M. Vinuth thanks the principal and Board of Management, NIE-IT for encouraging the research activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Bhojya Naik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, M.M., Naik, H.S.B., Kottam, N. et al. Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J Sol-Gel Sci Technol 91, 578–595 (2019). https://doi.org/10.1007/s10971-019-05048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05048-6

Keywords

Navigation