Skip to main content
Log in

Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A C/SiO2/SiC ternary aerogel was prepared from a formaldehyde–catechol/silicon source via the sol−gel method, supercritical drying, and high-temperature carbothermal reduction. The effects of different carbon/silicon molar ratios on the microstructure, chemical composition, and mechanical and shielding properties of the C/SiO2/SiC aerogels were investigated. The fabricated aerogels exhibited low density of 0.118–0.271 g/cm3, low thermal conductivity of 0.044 to 0.089 W/(m∙K) and a high specific surface area of 774 m2/g. The aerogel exhibited electromagnetic interference shielding effectiveness (SE) properties; the maximum SE value was 24 dB over 12.4–18.0 GHz with an absorption-dominant shielding characteristic. To improve the mechanical properties of the ternary aerogel, novel SiCw-C/SiO2/SiC aerogel composites were prepared by adding different contents of SiC whiskers into precursor solutions. The mechanism affecting thermal and mechanical properties of aerogel composites was investigated. This composite having high strength and low thermal conductivity had potential applications in space shuttles and reusable carrier thermal protection materials.

The fabricated C/SiO2/SiC ternary aerogels exhibited low density of 0.118–0.271 g/cm3 and low thermal conductivity of 0.044−0.089 W/(m∙K). The aerogel exhibited electromagnetic interference shielding effectiveness (SE) properties; the maximum SE value was 24 dB over 12.4–18.0 GHz with an absorption-dominant shielding characteristic.

Highlights

  • C/SiO2/SiC aerogel exhibited electromagnetic interference shielding effectiveness property.

  • Novel SiCw-C/SiO2/SiC aerogel composites with high compressive strength and low thermal conductivity were successfully prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. White RJ, Brun N, Budarin VL, Clark JH, Titirici MM (2014) Always look on the “light” side of life: sustainable carbon aerogels. Chemsuschem 7(3):670–689

    Article  CAS  Google Scholar 

  2. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  Google Scholar 

  3. Gui XC, Wei JQ, Wang KL, Cao AQ, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621

    Article  CAS  Google Scholar 

  4. Jia XF, Dai BW, Zhu ZX, Wang JT, Qiao WM, Long DH, Ling LC (2016) Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon 108:551–560

    Article  CAS  Google Scholar 

  5. Frackowiak E, Beguin F (2011) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  Google Scholar 

  6. Omranpour H, Motahari S (2013) Effects of processing conditions on silica aerogel during aging: role of solvent time and temperature. J Non-Cryst Solids 379(4):7–11

    Article  CAS  Google Scholar 

  7. Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. Mater Process Technol 199(1):10–26

    Article  CAS  Google Scholar 

  8. Leventis N, Sotiriouleventis C, Zhang AGH, Rawashdeh AMM (2002) Nanoengineering strong silica aerogels. Nano Lett 2(9):957–960

    Article  CAS  Google Scholar 

  9. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19(12):1589–1593

    Article  CAS  Google Scholar 

  10. Zu GQ, Shimizu T, Kanamori K, Zhu Y, Maeno A, Kaji H, Shen J, Nakanishi K (2018) Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. Acs Nano 12(1):521–532

    Article  CAS  Google Scholar 

  11. Zu GQ, Kanamori K, Maeno A, Kaji H, Nakanishi K (2018) Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem Int Ed 130(31):9722–9727

    Article  CAS  Google Scholar 

  12. Durães L, Ochoa M, Portugal A, Duarte N, Dias JP, Rocha N, Hernandez J (2010) Tailored silica based xerogels and aerogels for insulation in space environments. Adv Sci Technol 63(63):41–46

    Article  CAS  Google Scholar 

  13. Wiener M, Reichenauer G, Braxmeier S, Hemberger F, Ebert HP (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30(4):1372–1385

    Article  CAS  Google Scholar 

  14. Feng JZ, Feng J, Jiang YG, Zhang CR (2011) Ultralow density carbon aerogels with low thermal conductivity up to 2000 °C. Mater Lett 65(23):3454–3456

    Article  CAS  Google Scholar 

  15. Li KZ, Lan FT, Li HJ, Shen XT, He YG (2009) Oxidation protection of carbon/carbon composites with SiC/indialite coating for intermediate temperatures. Eur Ceram Soc 29(9):1803–1807

    Article  CAS  Google Scholar 

  16. Moene R, Makkee M, Moulijn JA (1998) High surface area silicon carbide as catalyst support characterization and stability. Appl Catal A 167(2):321–330

    Article  CAS  Google Scholar 

  17. Dey A, Kayal N, Chakrabarti O (2011) Preparation of porous SiC ceramics by an infiltration technique. Ceram Int 37(1):223–230

    Article  CAS  Google Scholar 

  18. Kong Y, Shen XD, Cui S, Fan MH (2014) Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation. Ceram Int 40(6):8265–8271

    Article  CAS  Google Scholar 

  19. Lamouroux F, Bourrat X, Naslain R, Thebault J (1995) Silicon carbide infiltration of porous C–C composites for improving oxidation resistance. Carbon 33(4):525–535

    Article  CAS  Google Scholar 

  20. Seraji MM, Ghafoorian NS, Bahramian AR, Alahbakhsh A (2015) Preparation and characterization of C/SiO2/SiC aerogels based on novolac/silica hybrid hyperporous materials. J Non-Cryst Solids 425:146–152

    Article  CAS  Google Scholar 

  21. Wu XD, Shao GF, Shen XD, Cui S, Chen XB (2017) Evolution of the novel C/SiO2/SiC ternary aerogel with high specific surface area and improved oxidation resistance. Chem Eng J 330:1022–1034

    Article  CAS  Google Scholar 

  22. Seraji MM, Ghafoorian NS, Bahramian AR (2016) Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/SiC aerogels using mercury porosimetry method. J Non-Cryst Solids 435:1–7

    Article  CAS  Google Scholar 

  23. Assefa D, Zera E, Campostrini R, Soraru GD, Vakifahmetoglu C (2016) Polymer-derived SiOC aerogel with hierarchical porosity through HF etching. Ceram Int 42(10):11805–11809

    Article  CAS  Google Scholar 

  24. Kong Y, Zhong Y, Shen XD, Cui S, Fan MH (2014) Effect of silica sources on nanostructures of resorcinol–formaldehyde/silica and carbon/silicon carbide composite aerogels. Micro Mesopor Mater 197:77–82

    Article  CAS  Google Scholar 

  25. Naseri I, Kazemi A, Bahramian AR, Razzaghi KR (2014) Preparation of organic and carbon xerogels using high-temperature–pressure sol-gel polymerization. Mater Des 61(9):35–40

    Article  CAS  Google Scholar 

  26. Du B, Hong CQ, Wang AZ, Zhou ST, Qu Q, Zhou SB, Zhang XH (2017) Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment. Ceram Int 44(1):563–570

    Article  CAS  Google Scholar 

  27. Leventis N, Sadekar A, Chandrasekaran N, Sotiriouleventis C (2010) Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem Mater 22(9):2790–2803

    Article  CAS  Google Scholar 

  28. Koc R, Cattamanchi SV (1998) Synthesis of beta silicon carbide powders using carbon coated fumed silica. J Mater Sci 33(10):2537–2549

    Article  CAS  Google Scholar 

  29. Yao JF, Wang HT, Zhang XY, Zhu W, Wei JP, Cheng YB (2007) Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures. Phys Chem C 111(2):636–641

    Article  CAS  Google Scholar 

  30. Chen K, Bao ZH, Du A, Zhu XR, Wu GM, Shen J, Zhou B (2012) Synthesis of resorcinol–formaldehyde/silica composite aerogels and their low-temperature conversion to mesoporous silicon carbide. Micro Mesopor Mater 149(1):16–24

    Article  CAS  Google Scholar 

  31. Najafi A, Fard FG, Rezaie HR, Ehsani N (2012) Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method. Powder Technol 219(3):202–210

    Article  CAS  Google Scholar 

  32. Wang B, Wang YD, Lei YP, Wu N, Gou YZ (2014) Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. Mater Chem A 2(48):20873–20881

    Article  CAS  Google Scholar 

  33. Ye CS, Zhang RB, An ZM, Wang BL (2018) A machinable carbon aerogel composite with a low thermal conductivity and enhanced mechanical properties. Adv Appl Ceram 117(8):468–475

    Article  CAS  Google Scholar 

  34. Chen QJ, Long DH, Chen L, Liu XJ, Liang XY, Qiao WM, Ling LC (2011) Synthesis of ultrahigh-pore-volume carbon aerogels through a “reinforced-concrete” modified sol-gel process. J Non-Cryst Solids 357(1):232–235

    Article  CAS  Google Scholar 

  35. Li YQ, Samad YA, Polychronopoulou K, Liao K (2015) Lightweight and highly conductive aerogel-like carbon from sugarcane with superior mechanical and EMI shielding properties. ACS Sustain Chem 3(7):1419–1427

    Article  CAS  Google Scholar 

  36. Guo DM, Lu Y, Zhao YB, Zhang XT (2015) Synthesis and physicochemical properties of graphene/ZrO2 composite aerogels. RSC Adv 5(16):11738–11744

    Article  CAS  Google Scholar 

  37. Liu QL, Gu JJ, Zhang W, Miyamooto Y, Chen ZX, Zhang D (2012) Biomorphic porous graphitic carbon for electromagnetic interference shielding. Mater Chem 22(39):21183–21188

    Article  CAS  Google Scholar 

  38. Taki Y, Kitiwan M, Katsui H, Goto T (2017) Electrical conductivity of C-SiC and Si-SiC prepared by spark plasma sintering. Mater Today Proc 4(11):11441–11444

    Article  Google Scholar 

  39. Fu R, Zheng B, Liu J, Weiss S, Ying JJ, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TF (2003) Fabrication of activated carbon fibres/carbon aerogels composites by gelation and supercritical drying in isopropanol. Mater Res 18(12):2765–2773

    Article  CAS  Google Scholar 

  40. Hou XB, Zhang RB, Fang DN (2017) Novel whisker-reinforced Al2O3 –SiO2 aerogel composites with ultra-low thermal conductivity. Ceram Int 43(12):9547–9551

    Article  CAS  Google Scholar 

  41. Wang MR, Pan N (2009) Predictions of effective physical properties of complex multiphase materials. Mater Sci Eng R 63(1):1–30

    Article  Google Scholar 

  42. Tang GH, Bi C, Zhao Y, Tao WQ (2015) Thermal transport in nano-porous insulation of aerogel: factors, models and outlook. Energy 90:701–721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11672031 and 11872103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubing Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Ye, C., Zhang, R. et al. Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding. J Sol-Gel Sci Technol 89, 623–633 (2019). https://doi.org/10.1007/s10971-019-04916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-04916-5

Keywords

Navigation