Sol–gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films

Abstract

The evaluation of the antifungal activity of Mg(OH)2 and Ca(OH)2 nanoparticles (NPs), synthesized by sol–gel method and their mixtures at different concentrations, is reported. The antifungal activity of the hydroxide NPs was studied using Aspergillus niger and Penicillium oxalicum isolated from stone surfaces. These model organisms were selected due to their ability to grow on outdoor and indoor climates and their significant impact on human health. Moreover, the antifungal activity of Mg(OH)2 and Ca(OH)2 NPs dispersed in positively charged polymeric matrices based on partially quaternized poly(2-(dimethylamino ethyl) methacrylate) (pDMAEMA) was studied. With respect to the morphology, particle size, and textural properties of the NPs, the mixtures of Mg–Ca hydroxides revealed a uniform and smaller particle size, along with a greater surface area, as compared to pristine Ca(OH)2 NPs. However, the Ca(OH)2 and a mixture of Mg(OH)2 and Ca(OH)2 (10:90 weight ratio) NPs, showed an enhanced growth inhibition of A. niger and P. oxalicum, suggesting that the effect of particle size on the antifungal activity would not be a preponderating factor. In addition, improved antifungal properties against A. niger and P. oxalicum were detected in composite coatings based on hydroxide NPs dispersed in quaternized p(DMAEMA-co-METAI). The use of these systems might provide promising composite materials with potential antifungal properties for various applications.

Highlights

  • Pure Mg(OH)2, Ca(OH)2, and mixtures of both NPs were successfully synthesized by sol–gel method.

  • The mixtures based on Mg–Ca hydroxides showed a uniform and smaller particle size, along with a greater surface area.

  • The effect of particle size on the antifungal activity would not be a preponderating factor.

  • The Ca(OH)2 and Mg(OH)2:Ca(OH)2 (10:90 wt%) NPs had an enhanced antifungal efficiency.

  • The use of Mg(OH)2 and Ca(OH)2 NPs in p(DMAEMA-co-METAI) composites improved the antifungal efficacy of polymeric matrices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Giles C, Lamont-Friedrich SJ, Michl TD, Griesser HJ, Coad BR (2018) Biotechnol Adv 36:264–280

    Article  Google Scholar 

  2. 2.

    Cámara B, Souza-Egipsy V, Ascaso C, Artieda O, De los Ríos A, Wierzchos J (2016) Chem Geol 443:22–31

    Article  Google Scholar 

  3. 3.

    Garrido-Benavent I, Pérez-Ortega S, De los Ríos A (2017) Mol Phylogenet Evol 107:117–131

    Article  Google Scholar 

  4. 4.

    Burforf EP, Fomina M, Gadd GM (2003) Mineral Mag 67:1127–1155

    Article  Google Scholar 

  5. 5.

    Gadd GM (2017) Nat Microbiol 2:16275

    Article  Google Scholar 

  6. 6.

    Gueidan C, Villaseñor CR, De Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F (2008) Stud Mycol 61:111–119

    Article  Google Scholar 

  7. 7.

    Egbuta MA, Mwanza M, Oluranti Babalola O (2017) Int J Environ Res Public Health 14:719

    Article  Google Scholar 

  8. 8.

    Sierra-Fernandez A, De la Rosa-García SC, Gómez-Villalba LS, Gómez-Cornelio S, Rabanal ME, Fort R, Quintana P (2017) ACS Appl Mater Interfaces 9:24873–24886

    Article  Google Scholar 

  9. 9.

    Wang L, Chen H, Shao L (2017) Int J Nanomed 12:1227–1249

    Article  Google Scholar 

  10. 10.

    Farrokhi M, Yang JK, Lee SM, Shirzad-Siboni M (2013) J Environ Health Sci Eng 2:11–23

    Google Scholar 

  11. 11.

    Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) Appl Phys A: Mater 100:829–834

    Article  Google Scholar 

  12. 12.

    Gómez-Ortíz N, De la Rosa-García S, González-Gómez W, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales B (2013) ACS Appl Mater Interfaces 5:1556–1565

    Article  Google Scholar 

  13. 13.

    Božanić D, Dimitrijević-Branković S, Bibić N, Luyt AS, Djoković V (2011) Carbohydr Polym 83:883–890

    Article  Google Scholar 

  14. 14.

    Bognadović U, Lazić V, Vodnik V, Budimir M, Marković Z, Dimitrijević S (2014) Mater Lett 128:75–78

    Article  Google Scholar 

  15. 15.

    Elhusseiny AF, Hassan HH (2013) Spectrochim Acta A Mol Biomol Spectrosc 103:232–245

    Article  Google Scholar 

  16. 16.

    Raghunath A, Perumal (2017) Int J Antimicrob Agents 49:137–152

    Article  Google Scholar 

  17. 17.

    Khatir NM, Abdul-Malek Z, Zak AK, Akbari A, Sabbagh F (2016) J Sol-Gel Sci Technol 78:91–98

    Article  Google Scholar 

  18. 18.

    Chandra Ray P, Yu H, Fu PP (2009) J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  Google Scholar 

  19. 19.

    Kabir E, Kumar V, K-H Kim, ACK Yip (2018) J Environ Manage 225: 261–271

  20. 20.

    Booster JL, Van Sandwijk A, Reuter MA (2003) Miner Eng 16:273–281

    Article  Google Scholar 

  21. 21.

    Sierra-Fernandez A, Gomez-Villalba LS, Rabanal ME, Fort R (2017) Mater Constr 67:325

    Article  Google Scholar 

  22. 22.

    Poggi G, Giorgi R, Toccafondi N, Katzur V, Baglioni P (2010) Langmuir 26:19084–19090

    Article  Google Scholar 

  23. 23.

    Al-Hazmi F, Umar A, Dar GN, Al-Ghamdi AA, Al-Sayari SA, Al-Hajry A, Kim SH, Al-Tuwirqi RM, Alnowaiserb F, El-Tantawy F (2012) J Alloy Compd 519:4–8

    Article  Google Scholar 

  24. 24.

    Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, Thorey F, Witte F (2010) Acta Biomater 6:1861–1868

    Article  Google Scholar 

  25. 25.

    Qiu L, Xie R, Ding P, Qu B (2003) Compos Struct 62:391–395

    Article  Google Scholar 

  26. 26.

    Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Dei L (2014) Langmuir 30:660–668

    Article  Google Scholar 

  27. 27.

    Zhu G, Schwendeman SP (2000) Pharm Res 17:351–357

    Article  Google Scholar 

  28. 28.

    Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Xiong G (2013) ACS Appl Mater Interfaces 5:1137–1142

    Article  Google Scholar 

  29. 29.

    Samanta A, Podder S, Ghosh CK, Bhattacharya M, Ghosh J, Mallik AK, Mukhopadhyay AK (2017) J Mech Behav Biomed Mater 72:110–128

    Article  Google Scholar 

  30. 30.

    Halbus AF, Horozov TS, Paunov N (2017) Adv Colloid Interface Sci 249:134–148

    Article  Google Scholar 

  31. 31.

    Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ (2016) Materials 9:599

    Article  Google Scholar 

  32. 32.

    Tang L, Gu W, Yi W, Bitter JL, Hong JY, Fairbrother DH, Loon Chen K (2013) J Membr Sci Technol 446:201–211

    Article  Google Scholar 

  33. 33.

    Wu T, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Food Chem 197:250–256

    Article  Google Scholar 

  34. 34.

    Liu T, Ding E, Xue F (2017) Int J Biol Macromol 103:1107–1112

    Article  Google Scholar 

  35. 35.

    Yamada K, Takagi C, Hirata M (2007) J Appl Polym Sci 104:3301–3308

    Article  Google Scholar 

  36. 36.

    Romano CE, Gallo EA (2001) Ink Jet Print Method 6:202–224. US Patent

    Google Scholar 

  37. 37.

    Hinton TM, Challagulla A, Stewart CR, Guerrero- Sanchez C, Grusche FA, Shi S, Bean AG, Monaghan P, Gunatillake PA, Thang SH, Tizard ML (2014) Nanomedicine 9:1141–1154

    Article  Google Scholar 

  38. 38.

    Hinton TM, Guerrero-Sanchez C, Graham JE, Le T, Muir BW, Shi S, Tizard MLV, Gunatillake PA, McLean KM, San H, Thang SH (2012) Biomaterials 33:7631–7642

    Article  Google Scholar 

  39. 39.

    Ravikumar T, Murata H, Koepsel RR, Russell A (2006) Biomacromolecules 7:2762–2769

    Article  Google Scholar 

  40. 40.

    Rawlinson L-AB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2010) Biomacromolecules 11:443–453

    Article  Google Scholar 

  41. 41.

    Yandi W, Mieszkin S, Callow ME, Callow JA, Finlay JA, Liedberg B, Edert T (2017) Biofouling 33:169–183

    Article  Google Scholar 

  42. 42.

    Chen Y, Wilbon PA, Chen YP, Zhou J, Nagarkatti M, Wang C, Chu F, Decho AW, Tang C (2012) RSC Adv 2:10275–10282

    Article  Google Scholar 

  43. 43.

    Yañez-Macias R, Alvarez-Moises I, Perevyazko I, Lezov A, Guerrero-Santos C, Schubert US, Guerrero-Sanchez C (2017) Macromol Chem Phys 218:1700065

    Article  Google Scholar 

  44. 44.

    Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, Amend AS, Seifert KA, Smson RA (2014) Stud Mycol 78:63–139

    Article  Google Scholar 

  45. 45.

    Crameri R, Garbani M, Rhyner C, Huitema C (2014) 69: 176–185

  46. 46.

    Rodríguez-Carvajal JJ (1993) Phys B 192:55–69

    Article  Google Scholar 

  47. 47.

    Gómez-Cornelio S, Ortega-Morales O, Morón-Ríos A, Reyes-Estebanez M, De la Rosa-Garcia S (2016) Act Bot Mex 117:59–77

    Article  Google Scholar 

  48. 48.

    Clinical and Laboratory Standards Institute (CLSI) (2004) Method for antifungal well diffusion susceptibility Testing of Yeast M-44A

  49. 49.

    Hammer Ø, Harper DAT, Ryan PD (2001) Palaeontol Electron 4, 9

  50. 50.

    Liu HQ, Zong RW, Lo S, Hu Y, Zhi Y (2018) Procedia Eng 211:447–455

    Article  Google Scholar 

  51. 51.

    Siqueira JF, Lopes HP (1999) Int Endod J 32:361–369

    Article  Google Scholar 

  52. 52.

    Carmona-Ribeiro AM, Dias de Melo-Carrasco L (2013) Int J Mol Sci 14:9906–9946

    Article  Google Scholar 

  53. 53.

    Kourmouli A, Valenti M, Rijn van E, Beaumont JE, Kalantzi O-I, Schmidt-Ott A, Biskos G (2018) J Nanopart Res 20:62

    Article  Google Scholar 

  54. 54.

    Brotzmann V, Schuermann M, Katschmidt B, Kaltschmidt C, Sudhoff H (2017) J Microb Biochem Technol 9:249–256

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología [CONACYT, Mexico]) of the “Fronteras de la Ciencia No. 138” project and by the Community of Madrid under the “Climortec”, BIA2014−53911-R, “Geomaterials 2” Programme (S2013/MIT_2914), and Multimat Challenge (S2013/MIT-2862). A.S.-F. would like to gratefully acknowledge the financial support of Santander Universidades through “Becas Iberoamérica Jóvenes Profesores e Investigadores, España 2015” scholarship program. C.G.-S., R.Y.-M., and U.S.S. thank CONACYT and the Deutscher Akademischer Austauschdienst (DAAD, Germany) for financial support within the framework of the funding program for international mobility PROALMEX 2015 (CONACyT project: 267752 and DAAD project: 57271725). C.G.-S. and U.S.S. also thank the Deutsche Forschungsgemeinschaft (DFG, Germany) for financial support for this research under the scheme of the grant SFB-1278 “PolyTarget” project B02. The authors also thank D. Aguilar, A. Cristobal, and D. Huerta for their valuable technical support. We also thank Adrián Gómez Guerrero of the National Center for Electron Microscopy (CNME, Madrid, Spain) for the assistance provided and for its support with TEM characterization.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Sierra-Fernandez or S. C. De la Rosa-García or C. Guerrero-Sanchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sierra-Fernandez, A., De la Rosa-García, S.C., Yañez-Macías, R. et al. Sol–gel synthesis of Mg(OH)2 and Ca(OH)2 nanoparticles: a comparative study of their antifungal activity in partially quaternized p(DMAEMA) nanocomposite films. J Sol-Gel Sci Technol 89, 310–321 (2019). https://doi.org/10.1007/s10971-018-4890-9

Download citation

Keywords

  • Aspergillus niger
  • Penicillium oxalicum
  • Hydroxide nanoparticles
  • Antifungal coatings
  • Poly[(2-dimethylamino) ethyl methacrylate]