Skip to main content

Advertisement

Log in

Efficient peptide based gelators for aromatic organic solvents and vegetable oils: application in phase selective gelation and dye entrapment

  • Original Paper: Supramolecular materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The examples of organogel in vegetable oil are limited and the illustration of single amphiphile showing organogel in a lot of vegetable oils are rare. Hence, invention of a new type of amphiphile capable to gelate different vegetable oils are demanding and challenging aspect to us. In this article, we have synthesized two peptide based low molecular weight organic gelators, [11-(2-tert-Butoxycarbonylamino-3-methyl-butyrylamino)-undecanoylamino]-acetic acid (TBMBUA) and [11-(2-tert-Butoxycarbonylamino-3-methyl-pentanoylamino)-undecanoylamino]-acetic acid (TBMPUA) and have demonstrated their excellent gelation ability towards a number of aromatic organic solvents and different edible vegetable oils. FT-IR and temperature dependence 1H-NMR spectroscopy studies confirmed that hydrogen bonding interaction among the amide linkages plays significant role for formation of gel in organic solvents. XRD and FT-IR measurements suggested anti-parallel beta sheet arrangement between the peptide chains in the self-assembled state. The study revealed that the synthesized amphiphile TBMBUA is a good phase selective gelator of aromatic organic solvents in water-solvent mixture and both the gelators are able to entrap toxic dyes from aqueous dye solution. Hence the gelators can be successfully utilized to remove the toxic aromatic organic solvents and toxic dyes present in waste water which is one of the serious problems in recent years.

Highlights

  • Single chain peptide-based efficient gelators of aromatic organic solvent and vegetable oil.

  • Intermolecular H-bonding interactions are responsible for formation stable plate-like aggregates.

  • Phase selector of toxic aromatic organic solvents.

  • Cationic toxic dye remover present in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vintiloiu A, Leroux JC (2008) J Control Release 125:179–192

    Article  Google Scholar 

  2. Sagiri SS, Behera BR, Rafanan R, Bhattacharya C, Pal K, Banerjee I, Rousseau D (2014) Soft Mater 12:47–72

    Article  Google Scholar 

  3. Kar T, Debnath S, Das D, Shome A, Das PK (2009) Langmuir 25:8639–8648

    Article  Google Scholar 

  4. Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellama B, Marlow M (2014) Soft Matter 10:237–256

    Article  Google Scholar 

  5. Cametti M, Dzolic Z (2014) Chem Commun 50:8273–8286

    Article  Google Scholar 

  6. Prathap A, Sureshan KM (2012) Chem Commun 48:5250–5252

    Article  Google Scholar 

  7. Xue M, Gao D, Liu K, Peng J, Fang Y (2009) Tetrahedron 65:3369–3377

    Article  Google Scholar 

  8. Trivedi DR, Ballabh A, Dastidar P (2003) Chem Mater 15:3971–3973

    Article  Google Scholar 

  9. Felip-Leon C, Díaz-Oltra S, Galindo F, Chameleonic JFM (2016) Chem Mater 28:7964–7972

    Article  Google Scholar 

  10. Wilder EA, Wilson KS, Quinn JB, Skrtic D, Antonucci JM (2005) Chem Mater 17:2946–2952

    Article  Google Scholar 

  11. Kar T, Mukherjee S, Das PK (2014) New J Chem 38:1158–1167

    Article  Google Scholar 

  12. Das Mahapatra R, Dey J (2015) Langmuir 31:8703–8709

    Article  Google Scholar 

  13. Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836

    Article  Google Scholar 

  14. Ajayaghosh A, George SJ (2001) J Am Chem Soc 123:5148–5149

    Article  Google Scholar 

  15. Abdallah DJ, Weiss RG (2000) Adv Mater 12:1237–1247

    Article  Google Scholar 

  16. Lehn JM (1990) Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  17. Lehn JM (1995) Supramolecular Chemistry: Concepts and Perspectives. VCH, Weinheim, Germany

    Book  Google Scholar 

  18. George M, Weiss GR (2006) Acc Chem Res 39:489–497

    Article  Google Scholar 

  19. Terech P, Weiss RG (1997) Chem Rev 97:3133–3160

    Article  Google Scholar 

  20. Noponen V, Valkonen A, Lahtinen M, Salo H, Sievänen E (2013) Supramol Chem 25:133–145

    Article  Google Scholar 

  21. D’Aléo A, Pozzo JL, Fages F, Schmutz M, Mieden-Gundert G, Vögtle F, Caplard V, Zinic M (2004) Chem. Commun. 190–191

  22. Llansola RF, Escuder B, Miravet JF (2009) J Am Chem Soc 131:11478–11484

    Article  Google Scholar 

  23. Hanabma K, Tanaka R, Suzuki M, Kimura M, Shirai H (1997) Adv Mater 9:1095–1097

    Article  Google Scholar 

  24. Yu X, Zhang P, Li Y, Chen L, Yi T, Ma Z (2015) Cryst Eng Comm 17:8039–8046

    Article  Google Scholar 

  25. Maity I, Parmar HS, Rasale DB, Das AK (2014) J Mater Chem B 2:5272–5279

    Article  Google Scholar 

  26. Rogers MA, Wright AJ, Marangoni AG (2009) Soft Matter 5:1594–1596

    Article  Google Scholar 

  27. Fayazl G, HosseinGoli SA, Kadivar MA (2017) J Am Oil Chem Soc 94:47–55

    Article  Google Scholar 

  28. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM (2007) J Am Oil ChemSoc 84:989–1000

    Article  Google Scholar 

  29. Satapathy D, Biswas D, Behera B, Sagiri SS, Pal K, Pramanik K (2013) J Appl Polym Sci 129:585–594

    Article  Google Scholar 

  30. Barbosa Rocha JC, Lopes DJ, NucciMascarenhas MC, Arellano DB, Ricardo Guerreiro LM, Lopes da Cunha R (2013) Food Res Int 50:318–323

    Article  Google Scholar 

  31. Zetzl AK, Marangoni AG, Barbut S (2012) Food Funct 3:327–337

    Article  Google Scholar 

  32. Co E, Marangoni AG (2013) J Am Oil Chem Soc 90:529–544

    Article  Google Scholar 

  33. Motulskya A, Lafleurb M, Couffin-Hoaraua AC, Hoarauc D, Bouryd F, Benoitd JP, Lerouxa JC (2005) Biomaterials 26:6242–6253

    Article  Google Scholar 

  34. Vintiloiu A, Lafleur M, Bastiat G, Leroux JC (2008) Pharm Res 25:845–852

    Article  Google Scholar 

  35. Bastit G, Plourde F, Motulsky A, Furtos A, Dumont Y, Quirion R, Fuhrmann G, Leroux JC (2010) Biomaterials 31:6031–6038

    Article  Google Scholar 

  36. Lukyanova L, Franceschi-Messant S, Vicendo P, Perez E, Rico-Lattes I, Weinkamer R (2010) Colloids Surf B 79:105–112

    Article  Google Scholar 

  37. Iwanaga K, Sumizawa T, Miyazaki M, Kakemi M (2010) Int J Pharm 388:123–128

    Article  Google Scholar 

  38. Khupe M, Khupukonoweshuro B, Kazlauciunas A, Thotnton PD (2015) Soft Matter 11:9160–9167

    Article  Google Scholar 

  39. Gallon G, Lapinte V, Robin JJ, Chopineau J, Devoisselle JM, Aubert-Pouessel A (2017) ACS Sustain Chem Eng 5:4311–4319

    Article  Google Scholar 

  40. Bhattacharya S, Krishnan-Ghosh Y (2001) Chem Commun 50:185–186

    Article  Google Scholar 

  41. Jadhav RS, Vemula PK, Kumar P, Raghavan SR, John G (2010) Angew Chem Int Ed 49:7695–7698

    Article  Google Scholar 

  42. Basak S, Nanda J, Banerjee A (2012) J Mater Chem 22:11658–11664

    Article  Google Scholar 

  43. Mukherjee S, Shang C, Chen X, Chang X, Liu K, Yu C, Fang Y (2014) Chem Commun 50:13940–13943

    Article  Google Scholar 

  44. Zhang Y, Ma Y, Deng M, Shang H, Liang C, Jiang S (2015) Soft Matter 11:5095–5100

    Article  Google Scholar 

  45. Li D, Li Q, Bai N, Dong H, Mao D (2017) ACS Sustain Chem Eng 5:5598–5607

    Article  Google Scholar 

  46. Arslan I, Balcioǧlu IA, Bahnemann DW (2000) Dyes Pigments 47:207–218

    Article  Google Scholar 

  47. Liu N, Zhang Q, Qu R, Zhang W, Li H, Wei Y, Fen L (2017) Langmuir 33:7380–7388

    Article  Google Scholar 

  48. Daneshva N, Khataee AR, Rasoulifard MH, Pourhassan (2007) J Hazard Mater 143:214–219

    Article  Google Scholar 

  49. Lachheb H, Puzenat E, Ksibi M, Houas A, Elaloui E, Guillard C, Herrmann JM (2002) Appl Catal B 39:75–90

    Article  Google Scholar 

  50. ZhuangX WanY, Feng C, ShenY ZhaoD (2009) Chem Mater 21:706–716

    Article  Google Scholar 

  51. Dou X, Li P, Zhang D, Feng CL (2012) Soft Matter 8:3231–3238

    Article  Google Scholar 

  52. Roy A, Maiti M, Nayak RR, Roy S (2013) J Mater Chem B 1:5588–5601

    Article  Google Scholar 

  53. Roy S, Maiti M, RoyA (2017) Chem Sel 2:6929–6939

    Google Scholar 

  54. Roy A, Maiti M, Roy S (2014) Colloids Surf A 461:76–84

    Article  Google Scholar 

  55. Palui G, Garai A, Nanda J, Nandi AK, Banerjee A (2010) J Phys Chem B 114:1249–1256

    Article  Google Scholar 

  56. Pal A, Dey J (2011) Soft Matter 7:10369–10376

    Article  Google Scholar 

  57. Nikiforidis CV, Gilbert EP, Scholten E (2015) RSC Adv 5:47466–47475

    Article  Google Scholar 

  58. Roy A, Roy S, Pradhan A, Maiti Choudhury S, Nayak RR (2018) Ind Eng Chem Res 57:2847–2855

    Article  Google Scholar 

  59. Naskar J, Palui G, Banerjee A (2009) J Phys Chem B 113:11787–11792

    Article  Google Scholar 

  60. Manchineella S, Govindaraju T (2012) RSC Adv 2:5539–5542

    Article  Google Scholar 

  61. Hou X, Gao D, Yan J, Ma Y, Liu K, Fang Y (2011) Langmuir 27:12156–12163

    Article  Google Scholar 

  62. Mahapatra RD, Dey J, Weiss RG (2017) Langmuir 33:12989–12999

    Article  Google Scholar 

  63. Baral A, Roy S, Dehsorkhi A, Hamley IW, Mohapatra S, Ghosh S, Banerjee A (2014) Langmuir 30:929–936

    Article  Google Scholar 

  64. Adhikary B, Palui G, Banerjee A (2009) Soft Matter 5:3452–3460

    Article  Google Scholar 

Download references

Acknowledgements

SG acknowledges UGC [22/06/2014(i) EU-V] for his fellowship. Departmental instrumental facility of DST FIST and UGC SAP program is acknowledged. We would like to acknowledge the University Scientific Instrumentation Centre (USIC), Vidyasagar University, and Indian Institute of Technology, Kharagpur, for providing instrumental facilities. The assistance of Dr. Sagar Pal, Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad-826004, India, for rheology measurement is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guchhait, S., Roy, S. Efficient peptide based gelators for aromatic organic solvents and vegetable oils: application in phase selective gelation and dye entrapment. J Sol-Gel Sci Technol 89, 852–865 (2019). https://doi.org/10.1007/s10971-018-4875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4875-8

Keywords

Navigation