Optical rotation kinetics study of the polycondensation of chiral sol-gel precursors

Abstract

We show that the polycondensation of chiral sol-gel precursors can be efficiently followed up by optical rotation measurements. Three silanes were studied, namely, the hexaethoxysilane derivatives of l-threonine, l-isoleucine, and dimethyl-l-tartrate. Two main sol-gel polycondensation mechanisms were identified, namely, linear kinetics product growth and second-order cluster–cluster growth. Dynamic light scattering measurements are used to support the proposed mechanisms.

Highlights

  • The polycondensation of chiral sol-gel precursors is efficiently followed up by optical rotation.

  • The chiral hexaethoxysilanes of L-threonine, L-isoleucine and dimethyl-L-tartrate, are studied.

  • Two sol-gel mechanisms were identified: linear-kinetics and second-order cluster-cluster growth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Assink RA, Kay BD (1988) Sol-gel kinetics I functional-group kinetics. J Non-Cryst Solids 99:359–370

    Article  Google Scholar 

  2. 2.

    Pouxviel JC, Boilot JP (1987) Kinetic simulations and mechanisms of the sol-gel polymerization. J Non-Cryst Solids 94:374–386

    Article  Google Scholar 

  3. 3.

    Pouxviel JC, Boilot JP, Beloeil JC, Lallemand JY (1987) NMR—study of the sol-gel polymerization. J Non-Cryst Solids 89:345–360

    Article  Google Scholar 

  4. 4.

    Liu JW, Kim SD (1996) Polycondensation behavior of methyltrimethoxysilane studied by NMR spectroscopy. J Polym Sci B 34:131–140

    Article  Google Scholar 

  5. 5.

    Rankin SE, Macosko CW, McCormick AV (1998) Sol-gel polycondensation kinetic modeling: methylethoxysilanes. AIChE J 44:1141–1156

    Article  Google Scholar 

  6. 6.

    Brinker C, Scherer G (1989) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

  7. 7.

    Kline AA, Mullins ME, Cornilsen BC (1991) Sol-gel kinetics followed by cylindrical attenuated total reflectance infrared-spectroscopy. J Am Ceram Soc 74:2559–2563

    Article  Google Scholar 

  8. 8.

    Ei-Roz M, Thibault-Starzyk F, Blume A (2014) Infrared study of the silica/silane reaction. Kautsch Gummi Kunstst 67:53–57

    Google Scholar 

  9. 9.

    Wood DL, Rabinovich EM, Johnson DW, Macchesney JB, Vogel EM (1983) Preparation of high-silica glasses from colloidal gels. 3. Infrared spectrophotometric studies. J Am Ceram Soc 66:693–699

    Article  Google Scholar 

  10. 10.

    Riegel B, Kiefer W, Hofacker S, Schottner G (1998) FT-Raman-spectroscopic investigations of the system glycidoxypropyltrimethoxysilane/aminopropyltriethoxysilane. J Sol-Gel Sci Technol 13:385–390

    Article  Google Scholar 

  11. 11.

    Artaki I, Bradley M, Zerda TW, Jonas J (1985) NMR and Raman—study of the hydrolysis reaction in sol-gel processes. J Phys Chem 89:4399–4404

    Article  Google Scholar 

  12. 12.

    Sui RH, Rizkalla AS, Charpentier PA (2008) Kinetics study on the sol-gel reactions in supercritical CO2 by using in situ ATR-FTIR spectrometry. Cryst Growth Des 8:3024–3031

    Article  Google Scholar 

  13. 13.

    Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Universality in colloid aggregation. Nature 339:360–362

    Article  Google Scholar 

  14. 14.

    Martin JE, Wilcoxon JP, Schaefer D, Odinek J (1990) Fast aggregation of colloidal silica. Phys Rev A 41:4379–4391

    Article  Google Scholar 

  15. 15.

    Shipovskaya AB, Malinkina ON, Fomina VI, Rudenko DA, Shchegolev SY (2015) Optical activity of solutions and films of chitosan acetate. Russ Chem Bull 64:1172–1177

    Article  Google Scholar 

  16. 16.

    Liu AH, Zhao ZY, Wang R, Zhang J, Wan XH (2013) Long range chirality transfer in free radical polymerization of vinylterphenyl monomers bearing chiral alkoxy groups. J Polym Sci A 51:3674–3687

    Article  Google Scholar 

  17. 17.

    Okamoto N, Mukaida F, Gu H et al. (1996) Molecular weight dependence of the optical rotation of poly((R)-1-deuterio-n-hexyl isocyanate) in dilute solution. Macromolecules 29:2878–2884

    Article  Google Scholar 

  18. 18.

    Marx S, Avnir D (2007) The induction of chirality in sol-gel materials. ACC Chem Res 40:768–776

    Article  Google Scholar 

  19. 19.

    Rebbin V, Schmidt R, Froba M (2006) Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angew Chem Int Ed 45:5210–5214

    Article  Google Scholar 

  20. 20.

    Zhu GR, Zhong H, Yang QH, Li C (2008) Chiral mesoporous organosilica spheres: synthesis and chiral separation capacity. Microporous Mesoporous Mater 116:36–43

    Article  Google Scholar 

  21. 21.

    Liu XA, Wang PY, Zhang L, Yang J, Li C, Yang QH (2010) Chiral mesoporous organosilica nanospheres: effect of pore structure on the performance in asymmetric. Catal Chem Eur J 16:12727–12735

    Article  Google Scholar 

  22. 22.

    Gao XS, Liu R, Zhang DC, Wu M, Cheng TY, Liu GH (2014) Phenylene-coated magnetic nanoparticles that boost aqueous asymmetric transfer hydrogenation reactions. Chem Eur J 20:1515–1519

    Article  Google Scholar 

  23. 23.

    Liu X, Wang PY, Yang Y, Wang P, Yang QH (2010) (R)-(+)-Binol-functionalized mesoporous organosilica as a highly efficient pre-chiral catalyst for asymmetric catalysis. Chem Asian J 5:1232–1239

    Article  Google Scholar 

  24. 24.

    Fireman-Shoresh S, Turyan I, Mandler D, Avnir D, Marx S (2005) Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films. Langmuir 21:7842–7847

    Article  Google Scholar 

  25. 25.

    Moreau JJE, Vellutini L, Man MWC, Bied C (2001) New hybrid organic–inorganic solids with helical morphology via H-bond mediated sol-gel hydrolysis of silyl derivatives of chiral (R,R)- or (S,S)-diureidocyclohexane. J Am Chem Soc 123:1509–1510

    Article  Google Scholar 

  26. 26.

    Cohen O, Abu-Reziq R, Gelman D (2017) Chiral enantiopure organosilane precursors for the synthesis of periodic mesoporous organosilicas. Tetrahedron 28:1675–1685

    Article  Google Scholar 

  27. 27.

    Brinker CJ (1988) Hydrolysis and condensation of silicates—effects on structure. J Non-Cryst Solids 100:31–50

    Article  Google Scholar 

  28. 28.

    Pereira JCG, Catlow CRA, Price GD (1998) Silica condensation reaction: An ab initio study. Chem Commun 13:1387–1388

    Article  Google Scholar 

  29. 29.

    Malay O, Yilgor I, Menceloglu YZ (2013) Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol-Gel Sci Technol 67:351–361

    Article  Google Scholar 

  30. 30.

    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  Google Scholar 

  31. 31.

    Sandoval-Diaz LE, Coy-Barrera ED, Trujillo CA (2012) Catalytic effect of fluoride on silica polymerization at neutral pH. React Kinet Mech Catal 105:335–343

    Article  Google Scholar 

  32. 32.

    McCaffer El (1969) Kinetics of condensation polymerization—preparation of a polyester. J Chem Educ 46:59–60

    Article  Google Scholar 

  33. 33.

    Raghavendra Rao A, Mohana Rao Y, Harikrishna M (2016) Optical rotation in polymer. IJIRSET 5:15082–15086

    Google Scholar 

  34. 34.

    Xi XJ, Jiang LM, Sun WL, Shen ZQ (2005) Synthesis and anionic polymerization of optically active N-phenylmaleimides bearing bulky oxazoline substituents. Eur Polym J 41:2592–2601

    Article  Google Scholar 

  35. 35.

    Mayer LM (1982) Aggregation of colloidal iron during estuarine mixing—kinetics, mechanism, and seasonality. Geochim Cosmochim Acta 46:2527–2535

    Article  Google Scholar 

  36. 36.

    Swift DL, Friedlander SK (1964) The coagulation of hydrosols by brownian motion and laminar shear flow. J Colloid Sci 19:621–647

    Article  Google Scholar 

  37. 37.

    Kopelman R (1988) Fractal reaction-kinetics. Science 241:1620–1626

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Edit Tshuva and Prof. Raed Abu-Reziq for fruitful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dmitri Gelman or David Avnir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, O., Gelman, D. & Avnir, D. Optical rotation kinetics study of the polycondensation of chiral sol-gel precursors. J Sol-Gel Sci Technol 90, 149–154 (2019). https://doi.org/10.1007/s10971-018-4858-9

Download citation

Keywords

  • Chiral sol-gels
  • Optical rotation
  • Kinetics
  • Sol-gel precursors