Skip to main content
Log in

Preparation and characterization of stable DQ silicone polymer sols

  • Original Paper: Sol–gel, hybrids, and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Stable DQ silicone polymer sols composed of di (D)- and tetra (Q)-functional alkoxysilanes were prepared by the following methods: (i) co-hydrolysis–condensation between diethoxy(dimethyl)silane (DEDMS) and tetraethoxysilane (TEOS) (DEDMS–TEOS as random copolymer sols), (ii) co-hydrolysis–condensation between poly(dimethylsiloxane) (PDMS) and TEOS (PDMS–TEOS as random block copolymer sol), and (iii) triethoxysilylation of a PDMS-lithium salt (PDMS–TES). The polymer sols were characterized by GPC, NMR, and FT-IR. The differences in properties between the structures were analyzed from their thermal stabilities and by using the swelling test. Thermal stabilities of these polymer sols were increased with the increase in the chain length of the D domain and with decrease in hydrolyzability. The swelling of films via polymer sols was decreased with the increase in the degree of crosslinking in sols.

DQ silicone polymer sols were prepared by three different methods and characterized by NMR, FT-IR, and GPC. The thermal stabilities of these sols were increased with the increase of the chain-length of D unit and hydrolysis resistance. Also, the solvent uptake was increased with the decrease of the degree of crosslinking in sols

Highlights

  • DQ silicone sols with different content and length of D units were prepared by using two methods.

  • Triethoxysiloxyl-terminated PDMS of higher molecular weight was prepared.

  • The structures of these polymer sols were characterized by 29Si NMR spectra.

  • The differences in properties of the structures were evaluated from their thermal stabilities and by using the swelling test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mayer H (1999) The chemistry and properties of silicone resins. Surf Coat Int 82:77–83

    Article  CAS  Google Scholar 

  2. Loy DA, Baugher BM, Baugher CR, Schneider DA, Rahimian K (2000) Substituent effects on the sol–gel chemistry of organotrialkoxysilanes. Chem Mater 12:3624–3632

    Article  CAS  Google Scholar 

  3. Sinkό K (2010) Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials 3:704–740

    Article  Google Scholar 

  4. Azlina HN, Hasnidawani JN, Norita H, Surip SN (2016) Synthesis of SiO2 nanostructures using sol–gel method. Acta Phys Pol A 129:842–844

    Article  CAS  Google Scholar 

  5. Loy DA, Shea KJ (1995) Bridged polysilsesquioxanes. highly porous hybrid organic–inorganic materials. Chem Rev 95:1431–1442

    Article  CAS  Google Scholar 

  6. McDonagh C, Sheridan F, Butler T, MacCraith BD (1996) Characterisation of sol–gel-derived silica films. J Non-Cryst Solids 194:72–77

    Article  CAS  Google Scholar 

  7. Coradin T, Boissiére M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13:1–10

    Article  Google Scholar 

  8. Narisawa M (2010) Silicone resin applications for ceramic precursors and composites. Materials 3:3518–3536

    Article  CAS  Google Scholar 

  9. Gunji T, Makabe Y, Takamura N, Abe Y (2001) Preparation and characterization of organic–inorganic hybrids and coating films from 3-methacryloxypropylpolysilsesquioxane. Appl Organomet Chem 15:683–692

    Article  CAS  Google Scholar 

  10. Takamura N, Gunji T, Hatano H, Abe Y (1999) Preparation and properties of polysilsesquioxanes: polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane. J Polym Sci A 37:1017–1026

    Article  CAS  Google Scholar 

  11. Abe Y, Kagayama K, Takamura N, Gunji T, Yoshihara T, Takahashi N (2000) Preparation and properties of polysilsesquioxanes. Function and characterization of coating agents and films. J Non-Cryst Solids 261:39–51

    Article  CAS  Google Scholar 

  12. Gunji T, Iizuka Y, Arimitsu K, Abe Y (2004) Preparation and properties of alkoxy(methyl)silsesquioxanes as coating agents. J Polym Sci A 42:3676–3684

    Article  CAS  Google Scholar 

  13. Takamura N, Okonogi H, Gunji T, Abe Y (2000) Preparation and properties of polysilsesquioxanes —preparation and properties of polymer hybrids from vinyltrimethoxysilane—. Kobunshi Ronbunshu 57:198–207

    Article  CAS  Google Scholar 

  14. Abe Y, Gunji T (2004) Oligo- and polysiloxanes. Prog Polym Sci 29:149–182

    Article  CAS  Google Scholar 

  15. Abe Y, Shimano R, Arimitsu K, Gunji T (2003) Preparation and properties of high molecular weight polyethoxysiloxanes stable to self-condensation by acid-catalyzed hydrolytic polycondensation of tetraethoxysilane. J Polym Sci A 41:2250–2255

    Article  CAS  Google Scholar 

  16. Gunji T, Tozune T, Kaburaki H, Arimitsu K, Abe Y (2013) Preparation of co-polymethyl(alkoxy)siloxanes by acid-catalyzed controlled hydrolytic copolycondensation of methyl(trialkoxy)silane and tetraalkoxysilane. J Polym Sci A 51:4732–4741

    Article  CAS  Google Scholar 

  17. Gunji T, Kaburagi H, Tsukada S, Abe Y (2015) Preparation, properties, and structure of polysiloxanes by acid-catalyzed controlled hydrolytic co-polycondensation of polymethyl(methoxy)siloxane and polymethoxysiloxane. J Sol–Gel Sci Technol 75:564–573

    Article  CAS  Google Scholar 

  18. Yuan QW, Mark JE (1999) Reinforcement of poly(dimethylsiloxane) networks by blended and in-situ generated silica fillers having various sizes, size distributions, and modified surfaces. Macromol Chem Phys 200:206–220

    Article  CAS  Google Scholar 

  19. Chen D, Chen F, Hu X, Zhang H, Yin X, Zhou Y (2015) Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos Sci Technol 117:307–314

    Article  CAS  Google Scholar 

  20. Uilk J, Bullock S, Johnston E, Myers SA, Merwin L, Wynne KJ (2000) Surface science of elastomeric coatings prepared from α,ω-dihydroxypoly(dimethylsiloxane) and the ethoxysiloxane mixture”ES40”. Macromolecules 33:8791–8801

    Article  CAS  Google Scholar 

  21. Babonneau F (1994) Hybrid siloxane-oxide materials via sol–gel processing: structural characterization. Polyhedron 13:1123–1130

    Article  CAS  Google Scholar 

  22. Hyeon-Lee J, Guo L, Beaucage G, Macip-Boulis MA, Yang AJM (1996) Morphological development in PDMS/TEOS hybrid materials. J Polym Sci B Polym Phys 34:3073–3080

    Article  CAS  Google Scholar 

  23. Guo L, Hyeon-Lee J, Beaucage G (1999) Structural analysis of poly(dimethylsiloxane) modified silica xerogels. J Non-Cryst Solids 243:61–69

    Article  CAS  Google Scholar 

  24. Huang H-H, Orler B, Wilkes GL (1987) Structure-property behavior of new hybrid materials incorporating oligomeric species into sol–gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules 20:1322–1330

    Article  CAS  Google Scholar 

  25. Iwamoto T, Morita K, Mackenzie JD (1993) Liquid state 29Si NMR study on the sol–gel reaction mechanisms of ormosils. J Non-Cryst Solids 159:65–72

    Article  CAS  Google Scholar 

  26. Wen J, Mark JE (1995) Sol–gel preparation of composites of poly(dimethylsiloxane) with SiO2 and SiO2/TiO2, and their mechanical properties. Polym J 27:492–502

    Article  CAS  Google Scholar 

  27. Babonneau F, Thorne K, Mackenzie JD (1989) Dimethyldiethoxysilane/tetraethoxysilane copolymers: Precursors for the silicon-carbon-oxygen system. Chem Mater 1:554–558

    Article  CAS  Google Scholar 

  28. Zhu B, Katsoulis DE, Keryk JR, McGarry FJ (2000) Toughening of a polysilsesquioxane network by homogeneous incorporation of polydimethylsiloxane segments. Polymer 41:7559–7573

    Article  CAS  Google Scholar 

  29. Armarego WLF, Chai C (2012) Purification of Laboratory Chemicals, 7th edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  30. Fei H-F, Xie W, Wang Q, Gao X, Hu T, Zhang Z, Xie Z (2014) Controlled synthesis and characterization of poly[methyl(3,3,3-trifluoropropyl)siloxane] with selective end groups. RSC Adv 4:56279–56287

    Article  CAS  Google Scholar 

  31. Kazakova VV, Gorbatsevich OB, Skvortsova SA, Demchenko NV, Muzafarov AM (2005) Synthesis of triethoxysilanol. Russ Chem Bull Int Ed 54:1350–1351

    Article  CAS  Google Scholar 

  32. Hayami R, Wada K, Nishikawa I, Sagawa T, Tsukada S, Yamamoto K, Gunji T (2017) Preparation and properties of organic–inorganic hybrid materials using titanium phosphonate cluster. Polym J 49:665–669

    Article  CAS  Google Scholar 

  33. Sakka S, Tanaka Y, Kokubo T (1986) Hydrolysis and polycondensation of dimethyldiethoxysilane and methyltriethoxysilane as materials for the sol–gel process. J Non-Cryst Solids 82:24–30

    Article  CAS  Google Scholar 

  34. Julián B, Gervais C, Cordoncillo E, Escribano P, Babonneau F, Sanchez C (2003) Synthesis and characterization of transparent PDMS–metal-oxo based organic–inorganic nanocomposites. Chem Mater 15:3026–3034

    Article  Google Scholar 

  35. Téllez L, Rubio J, Rubio F, Morales E, Oteo JL (2003) Synthesis of inorganic–organic hybrid materials from TEOS, TBT and PDMS. J Mater Sci 38:1773–1780

    Article  Google Scholar 

  36. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  37. Andrade GI, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2008) Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications. J Mater Sci 43:450–463

    Article  CAS  Google Scholar 

  38. Almeida JC, Castro AGB, Lancastre JJH, Salvado IMM, Margaҫa FMA, Fernandes MHV, Ferreira LM, Casimiro MH (2014) Structural characterization of PDMS–TEOS–CaO–TiO2 hybrid materials obtained by sol–gel. Mater Chem Phys 143:557–563

    Article  CAS  Google Scholar 

  39. Molenberg A, Möller M (1995) A fast catalyst system for the ring–opening polymerization of cyclosiloxanes. Macromol Rapid Commun 16:449–453

    Article  CAS  Google Scholar 

  40. Levy D, Zayat M (2015) The Sol–Gel Handbook: Synthesis, Characterization, and Applications, 1st edn. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  41. Fuchise K, Igarashi M, Sato K, Shimada S (2018) Organocatalytic controlled/living ring–opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts. Chem Sci 9:2879–2891

    Article  CAS  Google Scholar 

  42. Ibemesi JA, Meier DJ (1979) Synthesis of block copolymers of methyl siloxane, phenyl siloxane, vinyl siloxane, etc. Report 11:8, https://www.osti.gov/scitech/servlets/purl/5296016-koHrfB

    Google Scholar 

  43. Zhang Y, Zhang Z, Wang Q, Xie Z (2007) Synthesis of well-defined difunctional polydimethylsiloxane with an efficient dianionic initiator for ABA triblock copolymer. J Appl Polym Sci 103:153–159

    Article  CAS  Google Scholar 

  44. Yashiro T, Kricheldorf HR, Schwarz G (2010) Polymerization of cyclosiloxanes by means of triflic acid and metal triflates. Macromol Chem Phys 211:1311–1321

    Article  CAS  Google Scholar 

  45. Prado LASA, Sforça ML, de Oliveira AG, Yoshida IVP (2008) Poly(dimethylsiloxane) networks modified with poly(phenylsilsesquioxane)s: synthesis, structural characterization and evaluation of the thermal stability and gas permeability. Eur Polym J 44:3080–3086

    Article  CAS  Google Scholar 

  46. Gun’ko VM, Borysenko MV, Pissis P, Spanoudaki A, Shinyashiki N, Sulim IY, Kulik TV, Palyanytsya BB (2007) Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica. Appl Surf Sci 253:7143–7156

    Article  Google Scholar 

  47. Thomas TH, Kendrick TC (1970) Thermal analysis of polysiloxanes. II. Thermal vacuum degradation of polysiloxanes with different substituents on silicon and in the main siloxane chain. J Polym Sci A-2 8:1823–1830

    Article  CAS  Google Scholar 

  48. van Der Weij FW (1980) The action of tin compounds in condensation-type RTV silicone rubbers. Makromol Chem 181:2541–2548

    Article  Google Scholar 

  49. Sugahara Y, Okada S, Kuroda K, Kato C (1992) 29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. I. Dimethyldiethoxysilane. J Non-Cryst Solids 139:25–34

    Article  CAS  Google Scholar 

  50. Pouxviel JC, Boilot JP, Beloeil JC, Lallemand JY (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360

    Article  CAS  Google Scholar 

  51. Hook RJA (1996) 29Si NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes. J Non-Cryst Solids 195:1–15

    Article  CAS  Google Scholar 

  52. Mazúr M, Mlynárik V, Valko M, Pelikán P (2000) The time evolution of the sol–gel process: 29Si NMR study of the hydrolysis and condensation reactions of tetraethoxysilane. Appl Magn Reson 18:187–197

    Article  Google Scholar 

  53. Dutkiewicz M, Maciejewski H, Marciniec B, Karasiewicz J (2011) New fluorocarbofunctional spherosilicates: synthesis and characterization. Organometallics 30:2149–2153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks” (No. 2401) (JSPS KAKENHI Grant Number JP24102008). This work was also supported by JSPS KAKENHI Grant Number JP16K17951.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Gunji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayami, R., Nishikawa, I., Hisa, T. et al. Preparation and characterization of stable DQ silicone polymer sols. J Sol-Gel Sci Technol 88, 660–670 (2018). https://doi.org/10.1007/s10971-018-4839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4839-z

Keywords

Navigation