The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass


Cobalt (Co) is a potential therapeutic ion used to enhance angiogenesis through a stabilizing effect on hypoxia-inducible factor 1 alpha (HIF-1α), and its incorporation into the structure of bioactive glass is a promising strategy to enable sustained local delivery of Co to a wound site or bone defect. Here Co-releasing bioactive glasses were obtained through the sol–gel method, comparing cobalt nitrate and cobalt chloride as precursors. The effect of using different Co precursors on the sol–gel synthesis and in the obtained bioactive glass structure, chemical composition, morphology, dissolution behaviour, hydroxycarbonate apatite (HCA) layer formation was investigated. When the chloride salt was used as Co precursor, evidence of crystalline cobalt (II, III) oxide (Co3O4) phase formation was found, along with the presence of Co3+ species as evaluated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), whereas an amorphous glass containing mainly Co2+ species was obtained when the nitrate salt was the Co source. The presence of a crystalline phase decreased the surface area and pore volume of the final glass, consequently reducing the Co-release rate. Evidence of HCA layer formation after immersion in simulated body fluid (SBF) was still found when different precursors were used, although the rate of formation was reduced by the presence of Co. Therefore, this study showed that Co incorporation and the proper selection of the precursor could affect the final material structure, and properties, and should be considered when designing new bioactive glass compositions for tissue engineering applications.


  • The Co precursor selection can affect the bioactive glass properties.

  • Crystalline structures can be found when cobalt chloride is used as Co precursor.

  • Hydroxycarbonate apatite can be formed on Co-containing bioactive glass surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141.

    Article  Google Scholar 

  2. 2.

    Jones JR (2013) Review of bioactive glass: from hench to hybrids. Acta Biomater 9:4457–4486.

    CAS  Article  Google Scholar 

  3. 3.

    Maçon ALB, Lee S, Poologasundarampillai G, Kasuga T, Jones JR (2017) Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses. J Mater Sci 52:8858–8870.

    CAS  Article  Google Scholar 

  4. 4.

    Yu B, Turdean-Ionescu Ca, Martin Ra, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476.

    CAS  Article  Google Scholar 

  5. 5.

    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15.

    CAS  Article  Google Scholar 

  6. 6.

    Romero-Sánchez LB, Marí-Beffa M, Carrillo P, Medina MÁ, Díaz-Cuenca A (2018) Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Acta Biomater.

    Article  Google Scholar 

  7. 7.

    Vecchione R, Luciani G, Calcagno V, Jakhmola A, Silvestri B, Guarnieri D, Belli V, Costantini A, Netti PA (2016) Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness. Nanoscale 8:8798–8809.

    CAS  Article  Google Scholar 

  8. 8.

    Wang X, Li W (2016) Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration. Nanotechnology 27:1–8.

    CAS  Article  Google Scholar 

  9. 9.

    Silvestri B, Pezzella A, Luciani G, Costantini A, Tescione F, Branda F (2012) Heparin conjugated silica nanoparticle synthesis. Mater Sci Eng C 32:2037–2041.

    CAS  Article  Google Scholar 

  10. 10.

    Tallia F, Russo L, Li S, Orrin ALH, Shi X, Chen S, Steele JAM, Meille S, Chevalier J, Lee PD, Stevens MM, Cipolla L, Jones JR (2018) Bouncing and 3D printable hybrids with self-healing properties. Mater Horizons.

    CAS  Article  Google Scholar 

  11. 11.

    Sepulveda P, Jones JR, Hench L (2001) Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. J Biomed Mater Res 58:734–740.

    CAS  Article  Google Scholar 

  12. 12.

    Alves EGL, Serakides R, Rosado IR, Pereira MM, Ocarino NM, Oliveira HP, Góes AM, Rezende CMF (2015) Effect of the ionic product of bioglass 60s on osteoblastic activity in canines. BMC Vet Res 11:247.

    CAS  Article  Google Scholar 

  13. 13.

    Arcos D, Vallet-Regí M (2010) Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater 6:2874–2888.

    CAS  Article  Google Scholar 

  14. 14.

    Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution J Biomed Mater Res 55:151–157.<151::AID-JBM1001>3.0.CO;2-D

    CAS  Article  Google Scholar 

  15. 15.

    Houreh AB, Labbaf S, Ting H-K, Ejeian F, Jones JR, Esfahani M-HN (2017) Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci.

    CAS  Article  Google Scholar 

  16. 16.

    Delben JRJ, Pimentel OM, Coelho MB, Candelorio PD, Furini LN, dos Santos FA, de Vicente FS, Delben AAST (2009) Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim 97:433–436.

    CAS  Article  Google Scholar 

  17. 17.

    Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M (2011) Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses Acta Biomater 7:3452–3458.

    CAS  Article  Google Scholar 

  18. 18.

    O’Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385.

    CAS  Article  Google Scholar 

  19. 19.

    Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956.

    CAS  Article  Google Scholar 

  20. 20.

    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774.

    CAS  Article  Google Scholar 

  21. 21.

    Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M (2018) Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol 36:430–444.

    CAS  Article  Google Scholar 

  22. 22.

    Dziadek M, Zagrajczuk B, Menaszek E, Dziadek K, Cholewa-Kowalska K (2018) A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. Mater Lett 215:87–90.

    CAS  Article  Google Scholar 

  23. 23.

    Steinbrech DS, Mehrara BJ, Saadeh PB, Greenwald Ja, Spector Ja, Gittes GK, Longaker MT (2000) VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism. Am J Physiol Cell Physiol 278:C853–C860

    CAS  Article  Google Scholar 

  24. 24.

    Azevedo MM, Tsigkou O, Nair R, Jones JR, Jell G, Stevens MM (2014) Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. Tissue Eng Part A 00:1–8.

    Article  Google Scholar 

  25. 25.

    Azevedo M, Jell G, O’Donnell M, Law R, Hill R, Stevens M (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20:8854–8864.

    CAS  Article  Google Scholar 

  26. 26.

    Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y (2012) Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33:2076–2085.

    CAS  Article  Google Scholar 

  27. 27.

    Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E, Boccaccini AR (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877.

    CAS  Article  Google Scholar 

  28. 28.

    Littmann E, Autefage H, Solanki AK, Kallepitis C, Jones JR, Alini M, Peroglio M, Stevens MM (2018) Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation. J Eur Ceram Soc 38:877–886.

    CAS  Article  Google Scholar 

  29. 29.

    Siqueira RL, Zanotto ED (2013) The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P2O5 sol-gel glasses and glass-ceramics. J Mater Sci Mater Med 24:365–379.

    CAS  Article  Google Scholar 

  30. 30.

    Ting H-K, Page S, Poologasundarampillai G, Chen S, Hanna JV, Jones JR (2017) Phosphate content affects structure and bioactivity of sol-gel silicate bioactive glasses. Int J Appl Glass Sci.

    CAS  Article  Google Scholar 

  31. 31.

    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. J Mater Chem 19:1276–1282.

    CAS  Article  Google Scholar 

  32. 32.

    Maçon ALB, Jacquemin M, Page SJ, Li S, Bertazzo S, Stevens MM, Hanna JV, Jones JR (2016) Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J Sol-Gel Sci Technol.

    Article  Google Scholar 

  33. 33.

    Pereira MM, Clark AE, Hench LL (1994) Homogeneity of bioactive sol-gel-derived glasses in the system CaO-P2O5-SiO2.pdf. J Mater Synth Process 2:189–195

    CAS  Google Scholar 

  34. 34.

    Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2:231–239.

    CAS  Article  Google Scholar 

  35. 35.

    Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:115.

    CAS  Article  Google Scholar 

  36. 36.

    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915.

    CAS  Article  Google Scholar 

  37. 37.

    de Oliveira AAR, de Souza DA, Dias LLS, de Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8:025011.

    CAS  Article  Google Scholar 

  38. 38.

    Hasan MS, Werner-Zwanziger U, Boyd D (2015) Composition-structure-properties relationship of strontium borate glasses for medical applications. J Biomed Mater Res Part A 103:2344–2354.

    CAS  Article  Google Scholar 

  39. 39.

    Saboori M, Rabiee F, Moztarzadeh M, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass Mater Sci Eng C 29:335–340.

    CAS  Article  Google Scholar 

  40. 40.

    Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics. Ceram Int 41:11024–11045.

    CAS  Article  Google Scholar 

  41. 41.

    Yuvaraj S, Fan-yuan L, Tsong-huei C, Chuin-tih Y (2003) Thermal decomposition of metal nitrates in air and hydrogen environments J Phys Chem B 107:1044–1047.

    CAS  Article  Google Scholar 

  42. 42.

    Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973.

    CAS  Article  Google Scholar 

  43. 43.

    Pirayesh H, Nychka Ja (2013) Sol-gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96:1643–1650.

    CAS  Article  Google Scholar 

  44. 44.

    El-Kady AM, Ali AF (2012) Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int 38:1195–1204.

    CAS  Article  Google Scholar 

  45. 45.

    Moreira CDF, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C 58:1207–1216.

    CAS  Article  Google Scholar 

  46. 46.

    Catauro M, Dell A, Vecchio S (2016) Synthesis, structural, spectroscopic and thermoanalytical study of sol–gel derived SiO2–CaO–P2O5 gel and ceramic materials. Thermochim Acta 625:20–27.

    CAS  Article  Google Scholar 

  47. 47.

    Atkinson I, Anghel EM, Predoana L, Mocioiu OC, Jecu L, Raut I, Munteanu C, Culita D, Zaharescu M (2016) Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int 42:3033–3045.

    CAS  Article  Google Scholar 

  48. 48.

    Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M (2003) FTIR and XPS studies of bioactive silica based glasses. J Non-Cryst Solids 332:20–27.

    CAS  Article  Google Scholar 

  49. 49.

    Rao KJ, Benqlilou-Moudden H, Desbat B, Vinatier P, Levasseur A (2002) Infrared spectroscopic study of LiCoO2 thin films. J Solid State Chem 165:42–47.

    CAS  Article  Google Scholar 

  50. 50.

    Vasconcelos DCL, Nunes EHM, Houmard M, Motuzas J, Nascimento JF, Grava W, Ciminelli VST, Diniz JC, Vasconcelos WL (2013) Structural investigation of cobalt-doped silica derived from sol – gel synthesis. J Non-Cryst Solids 378:1–6.

    CAS  Article  Google Scholar 

  51. 51.

    Ortega-Zarzosa G, Araujo-Andrade C, Compeán-Jasso ME, Martínez JR, Ruiz F (2002) Cobalt oxide/silica xerogels powders: X-ray diffraction, infrared and visible absorption studies. J Sol-Gel Sci Technol 24:23–29.

    CAS  Article  Google Scholar 

  52. 52.

    Musat V, Fortunato E, Botelho AM, Monteiro R (2008) Sol-gel cobalt oxide-silica nanocomposite thin films for gas sensing applications Thin Solid Films 516:1469–1502.

    CAS  Article  Google Scholar 

  53. 53.

    Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology-a brief update. Sci Total Environ 432:210–215.

    CAS  Article  Google Scholar 

  54. 54.

    Toufiq AM, Wang F, Javed Q, Li Y (2013) Influence of SiO2 on the structure-controlled synthesis and magnetic properties of prismatic MnO2 nanorods. Nanotechnology 24:415703.

    CAS  Article  Google Scholar 

  55. 55.

    Dupin J, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324.

    CAS  Article  Google Scholar 

  56. 56.

    Perez-Pariente J, Balas F, Vallet-Regi M (2000) Surface and chemical study of SiO2.P2O5.CaO.(MgO) bioactive glasses. Chem Mater 12:750–755.

    CAS  Article  Google Scholar 

  57. 57.

    Mekki A, Salim M (1999) XPS study of transition metal doped silicate glasses. J Electron Spectrosc Relat Phenom 101:227–232.

    Article  Google Scholar 

  58. 58.

    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730.

    CAS  Article  Google Scholar 

  59. 59.

    Elkabouss K, Kacimi M, Ziyad M, Ammar S, Bozon-Verduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24.

    CAS  Article  Google Scholar 

  60. 60.

    Chuang TJ, Brundle CR, Rice DW (1976) Interpretation of X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf Sci 59:413–429

    CAS  Article  Google Scholar 

  61. 61.

    Mekki A, Holland D, Ziq K, Mcconville CF (1997) XPS and magnetization studies of cobalt sodium silicate glasses. J Non Cryst Solids 3:267–279

    Article  Google Scholar 

  62. 62.

    Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480.

    CAS  Article  Google Scholar 

  63. 63.

    Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78:2463–2468

    CAS  Article  Google Scholar 

  64. 64.

    de Oliveira AAR, de Carvalho BB, Sander Mansur H, de Magalhães Pereira M (2014) Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent. Mater Lett 133:44–48.

    CAS  Article  Google Scholar 

  65. 65.

    Murphy S, Boyd D, Moane S, Bennett M (2009) The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts. J Mater Sci Mater Med 20:2207–2214.

    CAS  Article  Google Scholar 

  66. 66.

    Bejarano J, Caviedes P, Palza H (2015) Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater 10:025001.

    CAS  Article  Google Scholar 

  67. 67.

    Uboldi C, Orsière T, Darolles C, Aloin V, Tassistro V, George I, Malard V (2015) Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. Part Fibre Toxicol 13:5.

    CAS  Article  Google Scholar 

  68. 68.

    Minchenko a, Caro J (2000) Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsive element. Mol Cell Biochem 208:53–62

    CAS  Article  Google Scholar 

  69. 69.

    Quinlan E, Partap S, Azevedo MM, Jell G, Stevens MM, O’Brien FJ (2015) Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials 52:358–366.

    CAS  Article  Google Scholar 

  70. 70.

    Paluszkiewicz C, Ślósarczyk A, Pijocha D, Sitarz M, Bućko M, Zima A, Chróścicka A, Lewandowska-Szumieł M (2010) Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct 976:301–309.

    CAS  Article  Google Scholar 

  71. 71.

    Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation J R Soc Interface 9:800–809.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from CNPq, CAPES and FAPEMIG/Brazil and the Advanced Photoelectron Spectroscopy Laboratory (APSL–Department of Materials - Imperial College London) for XPS analysis.

Author information



Corresponding author

Correspondence to Breno R. Barrioni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrioni, B.R., Norris, E., Jones, J.R. et al. The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass. J Sol-Gel Sci Technol 88, 309–321 (2018).

Download citation


  • Bioactive glass
  • Sol–gel
  • Cobalt
  • Bioactivity