Skip to main content
Log in

From random glass networks to random silica gel networks and their use as host for biocatalytic applications

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica aerogels have in common with silica glass to present a random 3-dimensional network of Si(-O-)4 molecular tetrahedrons. The main difference stands on the presence of a high volume ratio of macropores and mesopores, which may exceed 90% by volume in aerogels. By comparison, silica glass is a dense material. Consequently, an aerogel can entrap relatively big macromolecules in its pores. In the present article, the work done to observe the random network structure of oxide aerogels during the last thirty years, by the present author and his co-workers, is reviewed. As an application, the entrapment of two types of enzymes in silica aerogels is summarized. The first one comprises two types of lipases, used as biocatalysts of esterification reactions in organic solvents. The second one is carbonic anhydrase, applicable in the capture of CO2 in aqueous un-dried wet gels. The influence of the gel network on the enzyme activity and of the enzymes on the aerogels network structure, are both discussed. Overall, these investigations were independent from to the work by Phalippou and co-workers, but they largely beneficiated from cross synergy with them.

The work done by the author and his co-workers on the structure of oxide aerogels and their use to entrap enzymes, is reviewed

Highlights

  • The porous network structures of silica, boehmite and montmorillonite aerogels is described.

  • The pore volume may exceed 90% and comprise micropores, mesopores and macropores.

  • The pores can be efficiently used to entrap enzymes and make efficient biocatalysts.

  • The case of two types of enzyme: a lipase and a carbonic anhydrase are summarized.

  • Proteins such as enzymes are also shown to influence the aerogel network formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851. https://doi.org/10.1021/ja01349a006

    Article  Google Scholar 

  2. Warren BE (1937) X-Ray determination of the structure of liquids and glasses. J Appl Phys 8:645–654

    Article  Google Scholar 

  3. Smith DM, Stein D, Anderson JM, Ackermann W (1995) Preparation of low-density xerogels at ambient pressure. J Non-Cryst Solids 186:104–112

    Article  Google Scholar 

  4. Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285:295–302

    Article  Google Scholar 

  5. Woignier T (2011) Natural Aerogels with interesting environmental features: C-sequestration and Pesticides trapping. in Aegerter MA, Leventis M and Koebel MM (eds) Aerogel handbook. Springer, ISBN 978-1-4419-7477-8. Part 4: 235-247. https://doi.org/10.1007/978-1-4419-7589-8

  6. Yoldas BE (1975) Alumina gels that form porous transparent Al2O3. J Mater Sci 10:1856–1860

    Article  Google Scholar 

  7. Pierre AC, Uhlmann DR (1984) Super-amorphous Alumina Gels. Mater Res Soc Symp 32:119–124

    Article  Google Scholar 

  8. Pierre AC, Elaloui E, Pajonk GM (1998) Comparison of the structure and porous texture of alumina gels synthesized by different methods. Langmuir 14:66–73

    Article  Google Scholar 

  9. Pierre AC, Begag R, Pajonk G (1999) Structure and texture of alumina aerogel monoliths made by complexation with ethyl acetoacetate. J Mater Sci 34:4937–4944

    Article  Google Scholar 

  10. Zou J, Pierre AC (1992) SEM observations of “card-house” structures in montmorillonite gels. J Mater Sci Lett 11:664–665

    Article  Google Scholar 

  11. Pierre AC, Zou J, Barker C (1993) Structure reorganization in montmorillonite gels during drying. J Mater Sci 28:5193–5198

    Article  Google Scholar 

  12. Pierre AC (1998) Introduction to Sol-Gel Processing. Monograph ISBN 0-7923-8121-1. Kluwer Academic Publishers, Boston, USA, pp 394

    Google Scholar 

  13. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol–gel materials. Chem Mater 6:1605–1614

    Article  Google Scholar 

  14. Dave BC, Dunn B, Valentine JS, Zink JI (1994) Sol–gel encapsulation methods for biosensors. Anal Chem 66:1120A–1127A

    Article  Google Scholar 

  15. Lin J, Brown CW (1997) Sol–gel glass as a matrix for chemical and biochemical sensing. Trends Anal Chem 16:200–211

    Article  Google Scholar 

  16. Wang J (1999) Sol–gel materials for electrochemical biosensors. Anal Chim Acta 399:21–27

    Article  Google Scholar 

  17. Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Trends Biotechnol 18:282–296

    Article  Google Scholar 

  18. Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Conden Mat 13:R673–R691

    Article  Google Scholar 

  19. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461:1–36

    Article  Google Scholar 

  20. Pierre AC (2004) The sol-gel encapsulation of enzymes. A review. Biocatal Biotransfor 22:145–170

    Article  Google Scholar 

  21. Livage J, Coradin T (2017) Encapsulation of Enzymes, Antibodies and bacteria. In: Klein L, Aparicio M, Jitianu A (Eds) Handbook of Sol-Gel Science andTechnology. Springer International Publishing AG, Switzerland, pp 1–23

  22. Dickey FH (1955) Specific Adsorption. J Phys Chem 58:695–707

    Article  Google Scholar 

  23. Johnson P, Whateley TL (1971) Use of polymerizing silica gel systems for the immobilization of trypsin. J Colloid Interf Sci 37:557–563

    Article  Google Scholar 

  24. Carturan G, Campostrini R, Dire S, Scardi V, de Alteris E (1989) Inorganic gels for immobilization of biocatalysts: Inclusion of invertase-active whole cells of yeast (Saccharomyces cerevisiae) into thin layers of SiO2 gel deposited on glass sheets. J Mol Catal 57:L13–L16

    Article  Google Scholar 

  25. Bhatia RB, Brinker CJ, Ashley CS, Harris TM (1998) Synthesis of sol-gel matrices for encapsulation of enzymes using an aqueous route, in Organic/inorganic Hybrid Materials. In: Laine RM, Sanchez C, Brinker CJ, Glannelis E (Eds) Mater Res Soc Symp Proc. pp 183–188. https://doi.org/ezp2.lib.umn.edu/10.1557/PROC-519-183

    Google Scholar 

  26. Bhatia RB, Brinker CJ, Gupta AK (2000) Aqueous sol-gel process for protein encapsulation. Chem Mat 12:2434–2441

    Article  Google Scholar 

  27. Brinker CJ, Ashley CS, Bhatia R, Singh AK (2002) Sol-gel method for encapsulating enzymes and other biomolecules using a silica sol prepared from an aqueous alkali metal silicate solution. US Patent US6,495,352

  28. Brinker CJ, Ashley CS, Bhatia R, Singh AK (2002) Sol-gel method for encapsulating enzymes and other biomolecules using a silica sol prepared from an aqueous alkali metal silicate solution. US Patent 649 5352 81 20021217

  29. Liu DM, Chen IW (2001) Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process. US patent US6303290

  30. Venton DL, Cheesman KL, Chatterton RTJ, Anderson TL (1984) Entrapment of a highly specific antiprogesterone antiserum using polysiloxane copolymers. Biochim Biophys Acta 797:343–347

    Article  Google Scholar 

  31. Glad M, Norrlow O, Sellergren B, Siegbahn N, Mosnach K (1985) Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J Chromatogr 347:11–23

    Article  Google Scholar 

  32. Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol-gel-glasses: the trapping of enzymes. Mat Lett 10:1–5

    Article  Google Scholar 

  33. Ellerby LM, Nishida CR, Nishida F, Yamanaka S, Dunn B, Valentine JS, Zink JI (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255:1113–1115

    Article  Google Scholar 

  34. Yamanaka SA, Nishida F, Ellerby LM, Nishida CR, Dunn B, Valentine JS, Zink J (1992) Enzymatic activity of glucose oxidase encapsulated in transparent glass by the sol-gel method. Chem Mater 4:495–497

    Article  Google Scholar 

  35. Reetz M (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv Mat 9:943–954

    Article  Google Scholar 

  36. Gill I, Ballesteros A (1998) Encapsulation of biological within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach. J Am Chem Soc 120:8587–8598

    Article  Google Scholar 

  37. Reetz MT, Zonta A, Simpelkamp J (1995) Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials. Angew Chem Int Ed 34:301–303

    Article  Google Scholar 

  38. Reetz MT, Zonta A, Simpelkamp J, Rufinska A, Tesche B (1996) Characterization of hydrophobic sol–gel materials containing entrapped lipases. J Sol–Gel Sci Technol 7:35–43

    Article  Google Scholar 

  39. Gulcev MD, Goring GLG, Rakic M, Brennan JD (2002) Reagentless pH-based biosensing using a fluorescentlylabeled dextran co-entrapped with a hydrolytic enzyme in sol-gel derived nanocomposite films. Anal Chim Acta 457:47–59

    Article  Google Scholar 

  40. Miao Y, Tan SN (2001) Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal Chim Acta 437:87–93

    Article  Google Scholar 

  41. Nakane K, Ogihara T, Ogata N, Kurokawa Y (2001) Entrap-immobilization of invertase on composite gel fiber of cellulose acetate and zirconium alkoxide by sol-gel process. J Appl Poly Sci 81:2084–2088

    Article  Google Scholar 

  42. Yuan J, Wen D, Gaponik N, Eychmuller A (2013) Enzyme-encapsulating quantum dot hydrogels and xerogels as biosensors: multifunctional platforms for both biocatalysis and fluorescent probing. Angew Chem Int Ed 52:976–979

    Article  Google Scholar 

  43. Yin W, Rubenstein D (2011) Biomedical Applications of Aerogels. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels Handbook. Springer, Berlin, pp 683–694

  44. Antczak T, Mrowiec-Bialon J, Bielecki S, Jarzebski AB, Malinowski JJ, Lachowski AI, Galas E (1997) Thermostability and esterification activity in silica aerogel matrix and in organic solvents. Biotechnol Techn 11:9–11

    Article  Google Scholar 

  45. Pierre M, Buisson P, Fache F, Pierre AC (2000) Influence of the drying technique of silica gels on the enzymatic activity of encapsulated lipase. Biocatal Biotransform 18:237–251

    Article  Google Scholar 

  46. Carroll MK, Anderson AM (2011) Aerogels as Platforms for Chemical Sensors. In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels Handbook. Springer, Berlin, pp 637–650

  47. Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285:303–308

    Article  Google Scholar 

  48. Nassif N, Rager MN, Bouvet O, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Mater 1:42–45

    Article  Google Scholar 

  49. Nassif H, Roux C, Coradin T, Rager MN, Bouvet O, Livage J (2003) A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mat Chem 13:203–208

    Article  Google Scholar 

  50. Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with encapsulated lipase. J Sol-Gel Sci Techn 36:163–171

    Article  Google Scholar 

  51. Pierre AC (2011) History of Aerogels. In: Aegerter MA, Leventis M, Koebel MM (eds) Aerogel handbook. Springer, Berlin, pp 1–18

  52. Favre N, Pierre AC (2011) Synthesis and behaviour of hybrid polymer-silica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO2. J Sol-Gel Sci Techn 60:177–188

    Article  Google Scholar 

  53. Ge J (2002) Enzyme-based CO2 capture for advanced life suppor. Life Support biosphere Sci 8:181–189

    Google Scholar 

  54. Pierre AC (2012) Enzymatic carbon dioxide capture. Int Scholarly Res Network. ISRN Chem Eng. Article ID 753687. https://doi.org/10.5402/2012/753687

  55. Sondi I, Matijevic E (2001) Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. J Colloid Interf Sci 238:208–214

    Article  Google Scholar 

  56. Simpson RE, Habeger C, Rabinovich A, Adair JH (1998) Enzyme catalyzed inorganic precipitation of aluminum basic sulfate. J Am Ceram Soc 81:1377–1379

    Google Scholar 

  57. Bayraktar D, Tas AC (2001) Formation of hydroxyapatite precursors at 37 °C in urea- and enzyme urease-containing body fluids. J Mater Sci Lett 20:401–403

    Article  Google Scholar 

  58. Unuma H, Kato S, Ota T, Takahashi M (1997) Homogeneous precipitation of alumina precursors with the enzymatic decomposition of urea. J Soc Powder Technol Jpn 34:773–777

    Article  Google Scholar 

  59. Tas AC, Majewski PJ, Aldinger F (2002) Preparation of Strontium and Zin-doped LaGaO3 powders via precipitation in the presence of urea and/or enzyme urease. J Am Ceram Soc 85:1414–1420

    Article  Google Scholar 

  60. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Sci 286:1129–1132

    Article  Google Scholar 

  61. Coradin T, Durupthy O, Livage J (2002) Interactions of amino containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir 18:2331–2336

    Article  Google Scholar 

  62. Zhang YF, Wu H, Li J, Li L, Jiang YJ, Jiang ZY (2008) Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation. Chem Mater 20:1041–1048

    Article  Google Scholar 

  63. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro”. Proc Natl Acad Sci USA 96:361–365

    Article  Google Scholar 

  64. Luckarift HR, Dickerson MB, Sandhage KH, Spain JC (2006) Rapid, room-temperature synthesis of antibacterial bio-nanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643

    Article  Google Scholar 

  65. Abbate V, Bassindale AR, Brandstadt KF, Lawson R, Taylor PG (2010) Enzyme mediated silicon-oxygen bond formation; the use of Rhizopus oryzae lipase, lysozyme and phytase under mild conditions. Dalton Trans 39:9361–9368

    Article  Google Scholar 

  66. Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Enzyme-mediated sol–gel processing of alkoxysilanes. Chem Commun (Camb) 21:5544–5546

    Article  Google Scholar 

  67. Buisson P, El Rassy H, Maury S, Pierre AC (2003) Biocatalytic gelation of silica in the presence of a lipase. J Sol-Gel Sci Techn 27:373–379

    Article  Google Scholar 

  68. El Rassy H, Maury S, Buisson P, Pierre AC (2004) Hydrophobic silica aerogel–lipase biocatalysts: possible interactions between the enzyme and the gel. J Non-Cryst Solids 350:23–30

    Article  Google Scholar 

  69. Favre N, Ahmad Y, Pierre AC (2011) Biomaterials obtained by gelation of silica precursor with CO2 saturated water containing a carbonic anhydrase enzyme. J Sol-Gel Sci Techn 58:442–451. https://doi.org/10.1007/s10971-011-2411-1

    Article  Google Scholar 

  70. Warren BE, Biscoe J (1938) The structure of silica glass by X-Ray diffraction study. J Am Ceram Soc 21:49–54

    Article  Google Scholar 

  71. Henry M, Jolivet JP, Livage J (1992) Aqueous chemistry of metal cations: Hydrolysis, condensation and complexation. In: Reisfeld R, JJørgensen C (eds) Chemistry, Spectroscopy and Applications of Sol-Gel Glasses. Springer, Berlin, Heidelberg, Struct Bonding 77 153–206

    Chapter  Google Scholar 

  72. Pierre AC, Pajonk GM (2002) Aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  73. El Rassy H, Perrard A, Pierre AC (2003) Behavior of silica aerogel networks as highly porous solid solvent media of lipases, in a model transesterification. Chembiochem 4:203–210

    Article  Google Scholar 

  74. Matson DW, Smith RD (1989) Supercritical fluid technologies for ceramic processing applications. J Am Ceram Soc 72:871–881

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to the editor for his help in formatting the organization of this article, and the reviewers for their time and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Pierre.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre, A.C. From random glass networks to random silica gel networks and their use as host for biocatalytic applications. J Sol-Gel Sci Technol 90, 172–186 (2019). https://doi.org/10.1007/s10971-018-4798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4798-4

Keywords

Navigation