Skip to main content
Log in

Structural, morphological, optical and antibacterial properties of pentagon CuO nanoplatelets

  • Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pentagon copper oxide (CuO) nanoplatelets formation employing Nephelium lappaceum L. extract was successfully developed. Characteristic X-ray diffraction peaks revealed a monoclinic and end-centered lattice structure of copper oxide belonging to 1C62h (c2/c) space group. Three characteristic Raman peaks, Ag, Bg(1) and Bg(2), confirmed the monoclinic CuO structure. The pentagon CuO nanoplatelets formation increased proportionally with increase in calcination temperature from 600 to 800 °C and the particle size was noticeably increased from 30 to 250 nm. Strong photoluminescence emission peak was noticed in the UV region between 377 and 393 nm. The metal–oxygen Cu2+–O2− vibration of the synthesized product in the range between 300 and 700 cm−1 was confirmed using infrared studies. The CuO product obtained at 600 °C showed best antibacterial action due to its small particle size (30–60 nm) against both Gram-positive and Gram-negative bacteria. The obtained product cell morphology, proliferation and viability test were investigated with respect to control and 10, 50, 100, and 500 μg/ml. Cell viability of the product were respectively 74, 55.3, 50, and 27.3% and found suitable for biomedical applications.

Highlights

  • Biologic-mediated pentagon CuO nanoplatelets developed.

  • Mechanism of copper-ellagate complex formation was proposed.

  • 10, 50, 100 and 500 μg/ml cell viability were 74, 55.3, 50 and 27.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Booshehri AY, Wang R, Xu R (2015) Simple method of deposition of CuO nanoparticles on a cellulose paper and its antibacterial activity. Chem Eng J 262:999–1008

    Article  Google Scholar 

  2. Hung WC, Wu KH, Lyu DY, Cheng KF, Huang WC (2017) Preparation and characterization of expanded graphite/metal oxides for antimicrobial application. Mater Sci Eng C 75:1019–1025

    Article  Google Scholar 

  3. Bykkam S, Narsingam S, Ahmadipour M, Dayakar T, Rao KV, Chakra CS, Kalakotl S (2015) Few layered graphene sheet decorated by ZnO nanoparticles for anti-bacterial application. Superlattices Microstruct 83:776–784

    Article  Google Scholar 

  4. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  Google Scholar 

  5. Ananth A, Dharaneedharan S, Heo MS, Mok YS (2015) Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J 262:179–188

    Article  Google Scholar 

  6. Yola ML, Eren T, Atar N (2014) A novel and sensitive electrochemical DNA biosensor basedon Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 125:38–47

    Article  Google Scholar 

  7. Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Actuat B 210:149–157

    Article  Google Scholar 

  8. Huo C, Ouyang J, Yang H (2014) CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Sci Rep 4:3682

    Article  Google Scholar 

  9. Langmar O, Ganivet CR, Lennert A, Costa RD, Torre GDL, Torres T, Guldi DM (2015) Combining electron-accepting phthalocyanines and nanorod-like CuO electrodes for p-type dye-sensitized solar cells. Angew Chem 127:7798–7802

    Article  Google Scholar 

  10. Liu X, Li Z, Zhang Q, Li F, Kong T (2012) CuO nanowires prepared via a facile solution route and their photocatalytic property. Mater Lett 72:49–52

    Article  Google Scholar 

  11. Derekaya FB, Kutar C, Guldur C (2009) Selective CO oxidation over ceria supported CuO catalysts. Mater Chem Phys 115:496–501

    Article  Google Scholar 

  12. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. J Antimicrob Agents 33:587–592

    Article  Google Scholar 

  13. Wang H, Pan Q, Zhao J, Chen W (2009) Fabrication of CuO/C films with sisal-like hierarchical microstructures and its application in lithium ion batteries. J Alloy Compd 476:408–413

    Article  Google Scholar 

  14. Zhang H, Zhang M (2008) Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors. Mater Chem Phys 108:184–187

    Article  Google Scholar 

  15. Dubale AA, Pan C, Tamirat AG, Chen H, Su W, Chen C, Rick JF, Ayele DW, Aragaw BA, Lee J, Yang Y, Hwang BJ (2015) Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photo electrochemical water reduction. J Mater Chem A 3:12482–12499

    Article  Google Scholar 

  16. Yang J, Tan W, Chen C, Tao Y, Qin Y, Kong Y (2017) Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogen-doped graphene aerogel. Mater Sci Eng C 78:210–217

    Article  Google Scholar 

  17. Wang X, Hu C, Liu H, Du G, He X, Xi Y (2010) Synthesis of CuO nanostructures and their application for non-enzymatic glucose sensing. Sens Actuat B 144:220–225

    Article  Google Scholar 

  18. Aygun S, Cann D (2005) Response kinetics of doped CuO/ZnO heterocontacts. J Phys Chem B 109:7878–7882

    Article  Google Scholar 

  19. Li C, Wei W, Fang S, Wang H, Zhang Y, Gui Y, Chen R (2010) A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries. J Power Sources 195:2939–2944

    Article  Google Scholar 

  20. Dedkova K, Janíkova B, Matejova K, Cabanova K, Vana R, Kalup A, Hundakova M, Kukutschova J (2015) ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol B 151:256–263

    Article  Google Scholar 

  21. Guo X, Diao P, Xu D, Huang S, Yang Y, Jin T, Wu Q, Xiang M, Zhang M (2014) CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reactions. Int J Hydrog Energy 39:7686–7696

    Article  Google Scholar 

  22. Zou G, Li H, Zhang D, Xiong K, Dong C, Qian Y (2006) Well-aligned arrays of CuO nanoplatelets. J Phys Chem B 110:1632–1637

    Article  Google Scholar 

  23. Wang L, Tang K, Zhang M, Zhang X, Xu J (2014) Facile synthesis of CuO nanoparticles as anode for lithium ion batteries with enhanced performance. Funct Mater Lett 7:1440008

    Article  Google Scholar 

  24. Pandiyarajan T, Udayabhaskar R, Vignesh S, Arthur James R, Karthikeyan B (2013) Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Mater Sci Eng C 33:2020–2024

    Article  Google Scholar 

  25. Alavi MA, Morsali A, Joo SW, Min BK (2015) Ultrasound and modulation assisted synthesis of {[Cu2(BDC-NH2)2(dabco)] DMF.3H2O} nanostructures; new precursor to prepare nanorods and nanotubes of copper(II) oxide. Ultrason Sonochem 22:349–358

    Article  Google Scholar 

  26. Zhang X, Sun S, Lv J, Tang L, Kong C, Song X, Yang Z (2014) Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J Mater Chem A 2:10073–10080

    Article  Google Scholar 

  27. Kumar M, Kumara Swamy BE (2016) Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes. Mater Sci Eng C 58:142–152

    Article  Google Scholar 

  28. Liu Z, Bai H, Xu S, Sun DD (2011) Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generations. Int J Hydrog Energy 36:13473–13480

    Article  Google Scholar 

  29. Devipriya D, Roopan SMohana (2017) Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C 80:38–44

    Article  Google Scholar 

  30. Zhao X, Wang P, Li B (2010) CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy applications. Chem Commun 46:6768–6770

    Article  Google Scholar 

  31. Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456–2464

    Article  Google Scholar 

  32. Huang Q, Kang F, Liu H, Li Q, Xiao X (2013) Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J Mater Chem A1:2418–2425

    Article  Google Scholar 

  33. Ganesh Babu S, Karvembu R (2011) CuO nanoparticles: a simple, effective, ligand-free, and reusable heterogeneous catalyst for N-arylation of benzimidazole. Ind Eng Chem Res 50:9594–9600

    Article  Google Scholar 

  34. Zheng XC, Wang SP, Wang SR, Zhang SM, Huang WP, Wu SH (2005) Preparation, characterization and catalytic properties of CuO/CeO2 system. Mater Sci Eng C 25:516–520

    Article  Google Scholar 

  35. Zaman MA, Bhattacharjee A (2016) CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Adv 6:41348–41363

    Article  Google Scholar 

  36. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  Google Scholar 

  37. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control 156:128–145

    Google Scholar 

  38. Kunga ML, Taib MH, Lina PY, Wud DC, Wud WJ, Yehd BW, Hungl HS, Kuod CH, Cheno YW, Hsiehp SL, Hsieh S (2017) Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Colloids Surf B 155:399–407

    Article  Google Scholar 

  39. Kung ML, Hsieh SL, Wu CC, Chu TH, Lin YC, Yeh BW, Hsieh S (2015) Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale 7:1820–1829

    Article  Google Scholar 

  40. Yuvakkumar R, Joseph Nathanael A, Rajendran V, Hong SI (2014) Rice husk ash nanosilica to inhibit human breast cancer cell line (3T3). J Sol-Gel Sci Technol 72:198–205

    Article  Google Scholar 

  41. Safaei M, Taran M (2018) Optimized synthesis, characterization, and antibacterial activity of an alginate–cupric oxide bionanocomposite. J Appl Polym Sci 135:45682

    Article  Google Scholar 

  42. Lee JH, Lim JM, Velmurugan P, Park YJ, Park YJ, Bang KS, Oh BT (2016) Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity. J Photochem Photobiol B 162:93–99

    Article  Google Scholar 

  43. Javed R, Ahmed M, Haq IU, Nisa S, Zia M (2017) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater Sci Eng C 79:108–115

    Article  Google Scholar 

  44. Lim YF, Chua CS, Lee CJJ, Chi D (2014) Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys Chem Chem Phys 16:25928–25934

    Article  Google Scholar 

  45. Jerome P, Kausalya G, Daniel Thangadurai T, Karvembu R (2016) Green synthesis of CuO nanoflakes from copper pincer complex for effective N-arylation of benzimidazole. Catal Commun 75:50–54

    Article  Google Scholar 

  46. Alizadeh R, Yousuf I, Afzal M, Srivastav S, Srikrishna S, Arjmand F (2015) Enantiomeric fluoro-substituted benzothiazole Schiff base-valine Cu(II)/Zn(II) complexes as chemotherapeutic agents: DNA binding profile, cleavage activity, MTT assay and cell imaging studies. J Photochem Photobiol B143:61–73

    Article  Google Scholar 

  47. Buk V, Emregul E, Emregul KC (2017) Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Mater Sci Eng C 74:307–314

    Article  Google Scholar 

  48. Reddy PR, Rajeshwar S, Satyanarayana B (2016) Synthesis, characterization of new copper (ii) Schiff base and 1,10 phenanthroline complexes and study of their bioproperties. J Photochem Photobiol B160:217–224

    Article  Google Scholar 

  49. Oh SW, Bang HJ, Bae YC, Sun YK (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173:502–509

    Article  Google Scholar 

  50. Ghosh M, Dilawar N, Bandyopadhyay AK, Raychaudhuri AK (2009) Phonon dynamics of Zn (Mg, Cd) O alloy nanostructures and their phase segregation. J Appl Phys 106:84306

    Article  Google Scholar 

  51. Vijayaprasath G, Murugan R, Ravi G, Mahalingam T, Hayakawa Y (2014) Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol–gel spin coating method. Appl Surf Sci 313:870–876

    Article  Google Scholar 

  52. Shende DA, Rane YN, Raghuwanshi MG, Narayani M, Gosavi, Gosavi SR (2015) Effect of deposition temperature on growth and properties of nanostructure cadmium sulphide thin films by chemical bath deposition technique. J Chem Chem Sci 5:727–736

    Google Scholar 

  53. Jimenez C, Caroff T, Bartasyte A, Margueron S, Abrutis A, Chaix Pluchery O, Weiss F (2009) Raman study of CeO2 texture as a buffer layer in the CeO2/La2zR2O7/Ni architecture for coated conductors. Appl Spectrosc 63:401

    Article  Google Scholar 

  54. Xu JF, Ji W, Shen ZX, Tang SH (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147:516–519

    Article  Google Scholar 

  55. Siddiqui H, Qureshi MS, Haque FZ (2014) One-step, template-free hydrothermal synthesis of CuO tetrapods. Optik 125:4663–4667

    Article  Google Scholar 

  56. Habibi MH, Karimi B, Zendehdel M, Habibi M (2013) Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim Acta Part A 116:374–380

    Article  Google Scholar 

  57. Gouadec G, Colomban P (2007) Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater 53:1–56

    Article  Google Scholar 

  58. Kaviyarasu K, Maria Magdalane C, Anand K, Manikandan E, Maaza M (2015) Synthesis and characterization studies of MgO: CuO nanocrystals by wet-chemical method. Spectrochim Acta Part A 142:405–409

    Article  Google Scholar 

  59. Maji SK, Mukherjee N, Mondal A, Adhikary B, Karmakar B (2010) Chemical synthesis of mesoporous CuO from a single precursor: structural, optical and electrical properties. J Solid State Chem 183:1900–1904

    Article  Google Scholar 

  60. Karthik K, Jaya NV, Kanagaraj M, Arumugam S (2011) Temperature dependent magnetic anomalies of CuO nanoparticles. Solid State Commun 151:564–568

    Article  Google Scholar 

  61. Yoo JS, Lee JD (1997) The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor. J Appl Phys 81:2810

    Article  Google Scholar 

  62. Umadevi M, Christy AJegatha (2013) Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim Acta Part A 109:133–137

    Article  Google Scholar 

  63. Jayaprakash J, Srinivasan N, Chandrasekaran P, Girija EK (2015) Synthesis and characterization of cluster of grapes like pure and Zinc-doped CuO nanoparticles by sol–gel method. Spectrochim Acta Part A 136:1803–1806

    Article  Google Scholar 

  64. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf B 101:430–433

    Article  Google Scholar 

  65. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed 7:3527–3535

    Article  Google Scholar 

  66. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  67. Mallakpour S, Mansourzadeh S (2018) Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. Ultrason Sonochem 43:91

    Article  Google Scholar 

  68. Alshareef A, Laird K, Cross RBM (2017) Chemical synthesis of copper nanospheres and nanocubes and their antibacterial activity against Escherichia coli and Enterococcus sp. Acta Metall Sin 30(1):29–35

    Article  Google Scholar 

  69. Gu H, Chen X, Chen F, Zhou X, Parsaee Z (2018) Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem 41:109–119

    Article  Google Scholar 

  70. Alswat AA, Ahmad MB, Hussein MZ, Ibrahim NA, Saleh TA (2017) Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J Mater Sci Technol 33:889–896

    Article  Google Scholar 

  71. Shankar S, Rhim J-W (2017) Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads. Carbohydr Polym 163:137–145

    Article  Google Scholar 

  72. Yadav L, Mani Tripathi R, Prasad R, Namdeo Pudake R, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14

    Article  Google Scholar 

  73. Perelshtein I, Lipovsky A, Perkas N, Gedanken A, Moschini E, Mantecca P (2015) The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res 8(2):695–707

    Article  Google Scholar 

  74. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54(3):365–368

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC Start-Up Research Grant no. F.30–326/2016 (BSR) and the Deanship of Scientific Research at King Saud University (Research group no. RGP-1438-029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar or Fuad Ameen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheswari, R.U., Rani, B.J., Ravi, G. et al. Structural, morphological, optical and antibacterial properties of pentagon CuO nanoplatelets. J Sol-Gel Sci Technol 87, 515–527 (2018). https://doi.org/10.1007/s10971-018-4773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4773-0

Keywords

Navigation