Skip to main content
Log in

Sol-gel synthesis of cerium dioxide nanoparticles coated with stimuli-responsive components and the application for conversion of d-(−)-fructose into platform molecules

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of nanosized cerium dioxide particles coated with Pluronic P123, poly(vinyl alcohol) (PVA) or titanium oxide are prepared through a sol-gel process. Characterizations reveal sizes of cerium dioxide particles are maintained below 15 nm along with good crystallinity, and their crystal forms could be modulated by calcination. Furthermore, the organic components such as Pluronic P123 and PVA could be incorporated during sol-gel and affect sample porosity, while loading of titanium into cerium dioxide improves acid amount of sol-gel product. Catalysis reveals both PVA and titanium components show obvious and significant thermo- and pH-responsive properties for conversion of d-(−)-fructose into 5-(hydroxymethyl)-furfural, which mean a lot to the future large-scale production of biomass-derived fine chemicals. This work would not only contribute to the development of stimuli-responsive materials, but also show their promising application for conversion of biomass to platform molecules.

The cerium dioxide-based materials having stimuli-responsive components that obtained through adjustable sol-gel process bring about highly efficient conversion of d-(-)-fructose into important platform molecules.

Highlights

  • The cerium dioxide nanoparticles that coated with Pluronic P123 and poly(vinyl alcohol), or titanium dioxide are prepared through sol-gel.

  • The coated components such as poly(vinyl alcohol) and titanium dioxide show significant thermo- and pH-responsive properties during catalytic conversion of d-(-)-fructose into platform molecules.

  • High yields of platform molecules could be obtained in water at 20 °C, and synthetic catalysts show satisfactory recycling behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Reed K, Cormack A, Kulkarni A, Mayton M, Sayle D, Klaessig F, Stadler B (2014) Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ Sci Nano 1:309–405

    Article  Google Scholar 

  2. Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6:5820–5829

    Article  CAS  Google Scholar 

  3. Zhang G, Xu J, Hou Z, Wang Q (2017) Research on micro-structure and catalysis properties of nanosized Ce1-x(Fe0.5Eu0.5)O2-δ solid solutions. J Rare Earths 35:63–70

    Article  CAS  Google Scholar 

  4. Sun C, Li H, Chen L (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5:8475–8505

    Article  CAS  Google Scholar 

  5. Vinodkumar T, Durgasri DN, Reddy BM, Alxneit I (2014) Synthesis and structural characterization of Eu2O3 doped CeO2: influence of oxygen defects on CO oxidation. Catal Lett 144:2033–2042

    Article  CAS  Google Scholar 

  6. Hernández WY, Centeno MA, Romero-Sarria F, Odriozola JA (2009) Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation. J Phys Chem C 113:5629–5635

    Article  Google Scholar 

  7. Jasinski P, Suzuki T, Anderson HU (2003) Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B 95:73–77

    Article  CAS  Google Scholar 

  8. Ketpang K, Lee K, Shanmugam S (2014) Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity. ACS Appl Mater Interfaces 6:16734–16744

    Article  CAS  Google Scholar 

  9. Johnson AC, Park B (2012) Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ Toxicol Chem 31:2582–2587

    Article  CAS  Google Scholar 

  10. Cai G, Lu H, Zhou Y, Hao J, Wilkie CA (2012) Fire retardancy of emulsion polymerized poly (methyl methacrylate)/cerium(IV) dioxide and polystyrene/cerium(IV) dioxide nanocomposites. Thermochim Acta 549:124–131

    Article  CAS  Google Scholar 

  11. Hasannejad H, Shahrabi T, Jafarian M (2013) Synthesis and properties of high corrosion resistant Ni-cerium oxide nano-composite coating. Mater Corros 64:1104–1113

    Article  CAS  Google Scholar 

  12. Zhang J, Zhang M, Tang K, Verpoort F, Sun T (2014) Polymer-based stimuli-responsive recyclable catalytic systems for organic synthesis. Small 10:32–46

    Article  CAS  Google Scholar 

  13. Gao L, Kong T, Huo Y (2016) Dual thermoresponsive and pH-responsive poly(vinyl alcohol) derivatives: synthesis, phase transition study, and functional applications. Macromolecules 49:7478–7489

    Article  CAS  Google Scholar 

  14. Slavinskaya EM, Kardash TYu, Stonkus OA, Gulyaev RV, Lapin IN, Svetlichnyi VA, Boronin AI (2016) Metal-support interaction in Pd/CeO2 model catalyst for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal Sci Technol 6:6650–6666

    Article  CAS  Google Scholar 

  15. Wilklow-Marnell M, Jones WD (2017) Catalytic oxidation of carbon monoxide by α-alumina supported 3 nm cerium dioxide nanoparticles. Mol Catal 439:9–14

    Article  CAS  Google Scholar 

  16. Qureshi U, Dunnill CW, Parkin IP (2009) Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition. Appl Surf Sci 256:852–856

    Article  CAS  Google Scholar 

  17. Channei D, Nakaruk A, Phanichphant S (2009) Influence of graphene oxide on photocatalytic enhancement of cerium dioxide. Mater Lett 209:43–47

    Article  Google Scholar 

  18. Shibata K, Kiyoura T, Kitagawa J, Sumiyoshi T, Tanabe K (1973) Acidic properties of binary metal oxides. Bull Chem Soc Jpn 46:2985–2988

    Article  CAS  Google Scholar 

  19. Sidheswaran M, Tavlarides LL (2009) Characterization and visible light photocatalytic activity of cerium- and iron-doped titanium dioxide sol-gel materials. Ind Eng Chem Res 48:10292–10306

    Article  CAS  Google Scholar 

  20. Katalenich JA (2017) Production of cerium dioxide microspheres by an internal gelation sol-gel method. J Sol-Gel Sci Technol 82:654–663

    Article  CAS  Google Scholar 

  21. Han X, Li L, Wang C (2013) Template-free synthesis of uniform single-crystal hollow cerium dioxide nanocubes and their catalytic activity. Nanoscale 5:7193–7196

    Article  CAS  Google Scholar 

  22. Lange J-P, Price R, Ayoub PM, Louis J, Petrus L, Clarke L, et al. (2010) Valeric biofuels: a platform of cellulosic transportation fuels Angew Chem Int Ed 49:4479–4483

    Article  CAS  Google Scholar 

  23. Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic JA (2010) Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem 12:992–999

    Article  CAS  Google Scholar 

  24. Hu L, Lin L, Wu Z, Zhou S, Liu S (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sustain Energy Rev 74:230–257

    Article  CAS  Google Scholar 

  25. Wang S, Zhang Z, Liu B, Li J (2013) Silica-coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal Sci Technol 3:2104–2112

    Article  CAS  Google Scholar 

  26. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599

    Article  CAS  Google Scholar 

  27. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  CAS  Google Scholar 

  28. Wang F, Jiang L, Wang J, Zhang Z (2016) Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-diformylfuran over SBA-15 supported ruthenium catalysts. Energy Fuels 30:5885–5892

    Article  CAS  Google Scholar 

  29. Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572

    Article  CAS  Google Scholar 

  30. Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid-base property determined by TPD measurement. Appl Catal A 295:150–156

    Article  CAS  Google Scholar 

  31. Dutta S, De S, Patra AK, Sasidharan M, Bhaumik A, Saha B (2011) Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl Catal A 409-410:133–139

    Article  CAS  Google Scholar 

  32. Ko H-H, Yang G, Cheng H-Z, Wang M-C, Zhao X (2014) Growth and optical properties of cerium dioxide nanocrystallites prepared by coprecipitation routes. Ceram Int 40:4055–4064

    Article  CAS  Google Scholar 

  33. Chen D, He D, Lu J, Zhong L, Liu F, Liu J, Yu J, Wan G, He S, Luo Y (2017) Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H2-TPR characterization. Appl Catal B Environ 218:249–259

    Article  CAS  Google Scholar 

  34. Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, Descouts P, Grätzel M (2002) Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir 18:2582–2589

    Article  CAS  Google Scholar 

  35. Gionco C, Paganini MC, Agnoli S, Reeder AE, Giamello E (2013) Structural and spectroscopic characterization of CeO2-TiO2 mixed oxides. J Mater Chem A 1:10918–10926

    Article  CAS  Google Scholar 

  36. Nethravathi C, Rajamathi CR, Rajamathi M, Wang X, Gautam UK, Golberg D, Bando Y (2014) Cobalt hydroxide/oxide hexagonal ring-graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications. ACS Nano 8:2755–2765

    Article  CAS  Google Scholar 

  37. Chen H-R, Shi J-L, Zhang W-H, Ruan M-L, Yan D-S (2001) Incorporation of titanium into the inorganic wall of ordered porous zirconium oxide via direct synthesis. Chem Mater 13:1035–1040

    Article  CAS  Google Scholar 

  38. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  39. Zhang H, Zhang Y, Li C (2006) Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials. J Catal 238:369–381

    Article  CAS  Google Scholar 

  40. Huang B, Fan C, Pan C, Zheng A, Ma X, Li Y, Zhang J, Sun Y (2017) Synthesis and catalytic oxidation property of titanium-zirconium mixed oxide microsphere as well as microcube. Powder Technol 315:258–269

    Article  CAS  Google Scholar 

  41. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Macías-García A, Gómez-Serrano V (2016) Preparation of activated carbon-SnO2, TiO2, and WO3 catalysts. Study by FT-IR spectroscopy. Ind Eng Chem Res 55:5200–5206

    Article  CAS  Google Scholar 

  42. Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E (2016) Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim Acta 631:8–17

    Article  CAS  Google Scholar 

  43. Crestani CE, Bernardo A, Costa CBB, Giulietti M (2013) Fructose solubility in mixed (ethanol + water) solvent: Experimental data and comparison among different thermodynamic models. J Chem Eng Data 58:3039–3045

    Article  CAS  Google Scholar 

  44. Flood AE, Addai-Mensah J, Johns MR, White ET (1996) Refractive index, viscosity, density, and solubility in the system fructose + ethanol + water at 30, 40, and 50 °C. J Chem Eng Data 41:418–421

    Article  CAS  Google Scholar 

  45. Li H-B, Page AJ, Irle S, Morokuma K (2013) Temperature dependence of catalyst-free chirality-controlled single-walled carbon nanotube growth from organic templates. J Phys Chem Lett 4:3176–3180

    Article  CAS  Google Scholar 

  46. Roberts JJ, Naudiyal P, Jugé L, Bilston LE, Granville AM, Martens PJ (2015) Tailoring stimuli responsiveness using dynamic covalent cross-linking of poly (vinyl alcohol)-heparin hydrogels for controlled cell and growth factor delivery. ACS Biomater Sci Eng 1:1267–1277

    Article  CAS  Google Scholar 

  47. Zheng L-S, Llopis Q, Echeverria P-G, Férard C, Guillamot G, Phansavath P, Retovelomanana-Vidal V (2017) Asymmetric transfer hydrogenation of (hetero)arylketones with tethered Rh(III)-N-(p-tolylsulfonyl)-1,2-diphenylethylene-1,2-diamine complexes: scope and limitations. J Org Chem 82:5607–5615

    Article  CAS  Google Scholar 

  48. Ali FM, Kershi RM, Sayed MA, AbouDeif YM (2018) Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys B Condens Matter 538:160–166

    Article  CAS  Google Scholar 

  49. Flannelly T, Dooley S, Leahy JJ (2015) Reaction pathway analysis of ethyl levulinate and 5-ethoxymethylfurfural from d-fructose acid hydrolysis in ethanol. Energy Fuels 29:7554–7565

    Article  CAS  Google Scholar 

  50. Santos-Filho OA, Hopfinger AJ (2006) Structure-based QSAR analysis of a set of 4-hydroxy-5,6-dihydropyrones as inhibitors of HIV-1 protease: an application of the receptor-dependent (RD) 4D-QSAR formalism. J Chem Inf Model 46:345–354

    Article  CAS  Google Scholar 

  51. Long J, Hu J, Shen X, Ji B, Ding K (2002) Discovery of exceptionally efficient catalysts for solvent-free enantioselective Hetero-Diels-Alder reaction. J Am Chem Soc 124:10–11

    Article  CAS  Google Scholar 

  52. Hiyoshi N (2012) Nanocrystalline sodalite: preparation and application to epoxidation of 2-cyclohexen-1-one with hydrogen peroxide. Appl Catal A 419-420:164–169

    Article  CAS  Google Scholar 

  53. Alhassan FH, Rashid U, Taufiq-Yap YH (2015) Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3_MnO_SO4 2-/ZrO2 nanoparticle solid catalyst. Fuel 142:38–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Fundamental Research Funds for the Central Universities (xjj2014005). This work is also supported by Undergraduate Teaching Reform Research Project (No. 1620Y) and Basic Course Teaching Reform Project (No. 1602Z-04) of Xi'an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanqin Wang or Yang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Pan, W., Wang, W. et al. Sol-gel synthesis of cerium dioxide nanoparticles coated with stimuli-responsive components and the application for conversion of d-(−)-fructose into platform molecules. J Sol-Gel Sci Technol 88, 141–162 (2018). https://doi.org/10.1007/s10971-018-4771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4771-2

Keywords

Navigation