Skip to main content
Log in

Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, the redispersion of three nanocrystalline TiO2 colloids is studied: one pure and two Fe-doped titania. These three colloids are produced by an easy aqueous sol–gel synthesis using precipitation-acidic peptization of Ti precursor. For the two Fe-doped TiO2, one is doped during synthesis (primary doping) and the other is doped after the synthesis (secondary doping). The initial colloids are composed of crystalline TiO2 particles around 7 nm with good photocatalytic properties, tested on PNP degradation under visible light (wavelength >390 nm). The powders obtained by air drying of these three colloids are redispersed in water to produce colloids, which are compared to the initial colloid produced. For each colloid, five cycles of drying redispersion are achieved. The colloids are characterized by dynamic light scattering, zeta potential measurements, inductively coupled plasma–atomic emission spectroscopy, X-ray diffraction, nitrogen adsorption–desorption measurements, Mössbauer spectroscopy, diffuse reflectance spectroscopy, and photocatalytic tests. The results show that similar products are obtained between the cycles, maintaining homologous properties of colloids. This property of redispersion is mainly due to the acid (HNO3, HCl, or H2SO4) which protonates the surface of the TiO2 nanoparticle leading to high-surface charges and electrostatic repulsions between aggregates. This property can be very useful for industrial applications of this synthesis, especially as it allows the volume and weight to be reduced for transportation and storage. Moreover, results show that the pure TiO2 powder can be doped during its redispersion step. The redispersion of the TiO2 developed here is possible without surface functionalization or multiple step processes, contrary to commercial Degussa P25. A 2-year stability study of all the produced colloids has been performed by following the evolution of the macroscopic aspect and the physicochemical properties of these sols. This study showed high stability of the produced colloids.

Highlights

  • Crystalline TiO2 colloids synthesized by aqueous sol–gel method.

  • Redispersion cycles of the TiO2 dried powder are studied.

  • Physicochemical and photocatalytic properties are maintained through redispersion.

  • Acid plays the main role as the redispersing agent of the crystalline powder.

  • Redispersion allows reduction of the volume and weight for transportation and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001

    Article  Google Scholar 

  2. Houmard M, Riassetto D, Roussel F, Bourgeois A, Berthomé G, Joud JC et al. (2007) Morphology and natural wettability properties of sol-gel derived TiO2-SiO2 composite thin films. Appl Surf Sci 254:1405–1414. https://doi.org/10.1016/j.apsusc.2007.06.072

    Article  Google Scholar 

  3. Mahy JG, Leonard GL-M, Pirard S, Wicky D, Daniel A, Archambeau C et al (2017) Aqueous sol-gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J Sol Gel Sci Technol 81:27–35. https://doi.org/10.1007/s10971-016-4020-5

    Article  Google Scholar 

  4. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  Google Scholar 

  5. Mills A, Hunte SLe (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35. https://doi.org/10.1016/S1010-6030(97)00118-4

    Article  Google Scholar 

  6. Barbe CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V et al (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 71:3157–3171

    Google Scholar 

  7. Fujishima A, Hashimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications. BKC Inc., Tokyo

  8. Malengreaux CM, Douven S, Poelman D, Heinrichs B, Bartlett JR (2014) An ambient temperature aqueous sol–gel processing of efficient nanocrystalline doped TiO2-based photocatalysts for the degradation of organic pollutants. J Sol Gel Sci Technol 71:557–570. https://doi.org/10.1007/s10971-014-3405-6

    Article  Google Scholar 

  9. Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18. https://doi.org/10.1016/j.cej.2009.02.026

    Article  Google Scholar 

  10. Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191:155–160. https://doi.org/10.1016/j.surfcoat.2004.02.022

    Article  Google Scholar 

  11. Huang T, Huang W, Zhou C, Situ Y, Huang H (2012) Superhydrophilicity of TiO2/SiO2 thin films: synergistic effect of SiO2 and phase-separation-induced porous structure. Surf Coat Technol 213:126–132. https://doi.org/10.1016/j.surfcoat.2012.10.033

    Article  Google Scholar 

  12. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed Engl 34:2014–2017. https://doi.org/10.1002/anie.199520141

    Article  Google Scholar 

  13. Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99:9882–9885. https://doi.org/10.1021/j100024a033

    Article  Google Scholar 

  14. Gratzel M (2001) Sol-gel processed TiO2 films for photovoltaic applications. J Sol Gel Sci Technol 22:7–13. https://doi.org/10.1023/A:1011273700573

    Article  Google Scholar 

  15. Malengreaux CM, Léonard GM-L, Pirard SL, Cimieri I, Lambert SD, Bartlett JR et al. (2014) How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis. Chem Eng J 243:537–548. https://doi.org/10.1016/j.cej.2013.11.031

    Article  Google Scholar 

  16. Malengreaux CM, Pirard SL, Léonard G, Mahy JG, Klobes B, Herlitschke M et al. (2017) Study of the photocatalytic activity of Fe 3+, Cr 3+, La 3+ and Eu 3+ single- doped and co-doped TiO 2 catalysts produced by aqueous sol-gel processing. J Alloy Compd 691:726–738. https://doi.org/10.1016/j.jallcom.2016.08.211

    Article  Google Scholar 

  17. Bischoff B, Anderson M (1995) Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater 7:1772–1778

    Article  Google Scholar 

  18. Mahy JG, Lambert SD, Leonard GL-M, Zubiaur A, Olu P-Y, Mahmoud A et al. (2016) Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J Photochem Photobiol A Chem 329:189–202. https://doi.org/10.1016/j.jphotochem.2016.06.029

    Article  Google Scholar 

  19. Mahshid S, Askari M, Ghamsari MS (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189:296–300. https://doi.org/10.1016/j.jmatprotec.2007.01.040

    Article  Google Scholar 

  20. Bartlett JR, Gazeau D, Zemb T, Woolfrey JL (1998) The structure of multicomponent (titania/zirconia) nanoparticles. J Sol Gel Sci Technol 118:113–118. https://doi.org/10.1023/A:1008667725327

    Article  Google Scholar 

  21. Semlali S, Pigot T, Flahaut D, Allouche J, Lacombe S, Nicole L (2014) Mesoporous Pt-TiO2 thin films: photocatalytic efficiency under UV and visible light. Appl Catal B Environ 150–151:656–662. https://doi.org/10.1016/j.apcatb.2013.12.042

    Article  Google Scholar 

  22. Malengreaux CM, Timmermans A, Pirard SL, Lambert SD, Pirard J-P, Poelman D et al. (2012) Optimized deposition of TiO2 thin films produced by a non-aqueous sol–gel method and quantification of their photocatalytic activity. Chem Eng J 195–196:347–358. https://doi.org/10.1016/j.cej.2012.04.076

    Article  Google Scholar 

  23. Mahy JG, Cerfontaine V, Poelman D, Devred F, Gaigneaux EM, Heinrichs B et al. (2018) Highly efficient low-temperature N-doped TiO 2 catalysts for visible light photocatalytic applications. Mater (Basel) 11:1–20. https://doi.org/10.3390/ma11040584

    Google Scholar 

  24. Chu B (2008) In: Borsali R, Pecora R (eds) Soft matter characterization. Springer, the Netherlands, p 335–372

  25. Sing KSW, Rouquerol J, Bergeret HJG, Gallezot P, Vaarkamp M, Koningsberger DC, Datye AK, Niemantsverdriet JW, Butz T, Engelhardt G, Mestl G, Knözinger H (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH, Weinheim, p 428–582. https://doi.org/10.1002/9783527619474.ch3a

  26. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685

    Article  Google Scholar 

  27. Madsen IC, Finney RJ, Flann RCA, Frost MT, Wilson BW (1991) Quantitative analysis of high-alumina refractories using X-ray powder diffraction data and the Rietveld method. J Am Ceram Soc 74:619–624

    Article  Google Scholar 

  28. Lecloux A (1971) Exploitation des isothermes d’adsorption et de désorption d’azote pour l’étude de la texture des solides poreux. Mémoires de la Société Royale des Sciences de Liège, p 169–209

  29. KUBELKA P (1931) Ein Beitrag zur Optik der Farban striche. Z Tech Phys 12: 593–603. http://ci.nii.ac.jp/naid/10008164867/en/. Accessed 16 Oct 2015

  30. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials. J Opt Soc Am 38:448–457. https://doi.org/10.1364/JOSA.44.000330

    Article  Google Scholar 

  31. Páez CA, Poelman D, Pirard JP, Heinrichs B (2010) Unpredictable photocatalytic ability of H2-reduced rutile-TiO2 xerogel in the degradation of dye-pollutants under UV and visible light irradiation. Appl Catal B Environ 94:263–271. https://doi.org/10.1016/j.apcatb.2009.11.017

    Article  Google Scholar 

  32. Escobedo Morales A, Sánchez Mora E, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fis S 53:18–22. http://www.researchgate.net/publication/229050010_Use_of_diffuse_reflectance_spectroscopy_for_optical_characterization_of_un-supported_nanostructures/file/79e41507eead49bb27.pdf

    Google Scholar 

  33. Páez CA, Liquet DY, Calberg C, Lambert SD, Willems I, Germeau A et al. (2011) Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO2 by O2-pressure monitoring. Catal Commun 15:132–136. https://doi.org/10.1016/j.catcom.2011.08.025

    Article  Google Scholar 

  34. Vinogradov AV, Vinogradov VV (2014) Effect of acidic peptization on formation of highly photoactive TiO2 films prepared without heat treatment. J Am Ceram Soc 97:290–294. https://doi.org/10.1111/jace.12560

    Article  Google Scholar 

  35. Yang J, Mei S, Ferreira JMF, Norby P, Quaresmâ S (2005) Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization. J Colloid Interface Sci 283:102–106. https://doi.org/10.1016/j.jcis.2004.08.109

    Article  Google Scholar 

  36. Hore S, Palomares E, Smit H, Bakker NJ, Comte P, Liska P et al. (2005) Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. J Mater Chem 15:412. https://doi.org/10.1039/b407963a

    Article  Google Scholar 

  37. Matijevic E (1981) Monodispersed metal (hydrous) oxides - a fascinating field of colloid science. Acc Chem Res 14:22–29. https://doi.org/10.1021/ar00061a004

    Article  Google Scholar 

  38. Liao DL, Wu GS, Liao BQ (2009) Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp 348:270–275. https://doi.org/10.1016/j.colsurfa.2009.07.036

    Article  Google Scholar 

  39. D’Orlyé F, Varenne A, Georgelin T, Siaugue JM, Teste B, Descroix S et al. (2009) Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30:2572–2582. https://doi.org/10.1002/elps.200800835

    Article  Google Scholar 

  40. Tasseroul L, Páez CA, Lambert SD, Eskenazi D, Heinrichs B (2016) Photocatalytic decomposition of hydrogen peroxide over nanoparticles of TiO 2 and Ni (II) -porphyrin-doped TiO 2: a relationship between activity and porphyrin anchoring mode. Appl Catal B Environ 182:405–413. https://doi.org/10.1016/j.apcatb.2015.09.042

    Article  Google Scholar 

  41. Páez CA, Liquet D, Calberg C, Eskenazi D, Pirard J-P, Heinrichs B (2013) Process for manufacturing a composite material. Patent WO2013171297A2

  42. Deng Y, Oswald M, Deller K (2008) Aqueous/organic metal oxide dispersion and coated substrates and mouldings produced therewith. https://www.google.com/patents/US20080032117

Download references

Acknowledgements

S.D.L. thanks the Belgian National Funds for Scientific Research (F.R.S.-FNRS) for her Associate Researcher position. The authors also thank the Ministère de la Région Wallonne Direction Générale des Technologies, de la Recherche et de l’Energie (DG06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien G. Mahy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahy, J.G., Deschamps, F., Collard, V. et al. Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J Sol-Gel Sci Technol 87, 568–583 (2018). https://doi.org/10.1007/s10971-018-4751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4751-6

Keywords

Navigation