Skip to main content
Log in

Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aim of the present work is to prepare zirconia nanofibers using microwave assisted sol–gel method. Both honey and microwave powers are employed as structure directing agents to improve the stability and reduce the crystallite size. Honey, acting as capping agent, prevents the particles from hard agglomeration. Soft agglomeration or less agglomeration results in smaller crystallite size that prevents the transformation of tetragonal to monoclinic phase resulting in stabilized tetragonal zirconia (t-ZrO2). Zirconium oxychloride is used as precursor of zirconium and deionized water as solvent. Effect of microwave powers, in the range of 100–900 W with interval of 200 W, on zirconia stabilization is observed. X-ray diffraction analysis shows the presence of phase pure t-ZrO2 at low microwave power ~ 100 W with crystallite size ~ 26 nm. Formation of phase pure t-ZrO2 at low microwave power is due to the presence of sufficient amount of honey to coat the zirconia crystals. Relatively higher x-ray density has been observed in case of phase pure t-ZrO2 at 100 W of microwave power. This high density and phase purity reveals the high value of hardness (~ 1503 HV). Scanning electron microscopy analysis reveals the formation of well-separated nanofibers without agglomeration at 100 W. These nanofibers are purposed for bone implants and bone grafting. Structural transformation along with hard agglomeration is observed with increase in microwave powers from 500 W to 900 W. FTIR and Raman fundamental tetragonal bands, appearing at 490 cm−1 and 148 cm−1, respectively, confirm the formation of t-ZrO2 at low microwave power. Sample with phase purity exhibits high grain boundary resistance (1.95 MΩ) along with high dielectric constant (~ 74) and low tangent loss (at log f = 4.0). It is worth mentioning here that phase pure t-ZrO2 at very low microwave power (~100 W) with high density and well-separated nanofibers has been obtained without any post heat treatment.

Highlights

  • Zirconia nanofibers (30 nm) are synthesized using microwave assisted sol–gel method.

  • Honey is used as capping agent to reduce agglomeration.

  • XRD results confirm the formation of phase pure tetragonal ZrO2 at low microwave power (~ 100 W) without post heat treatment.

  • Nanofibers prepared at 100 W of microwave power reveal high density and high value of hardness (~ 1503 HV).

  • SEM micrographs show large area surface growth of nanocrystals and nanofibers.

  • FTIR and Raman fundamental tetragonal bands appeared at 490 cm−1 and 148 cm−1, respectively, confirming the formation of t-ZrO2.

  • High grain boundary resistance (1.95 MΩ), high dielectric constant (~ 74) along with low tangent loss (at log f = 4.0) are observed at microwave power of 100 W.

  • Nanofibers with phase pure tetragonal zirconia (t-ZrO2) have been synthesized without any post heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sanad MMS, Rashad MM, Abdel-Aal EA, El-Shahat MF (2013) Mechanical, morphological and dielectric properties of sintered mullite ceramics at two different heating rates prepared from alkaline monophasic salts Ceram Int 39:1547–1554

    Article  Google Scholar 

  2. Johnston BD, Scown MT, Moger J, Cumberland SA, Baalousha M, Linge K, Aerle RV, Jarvis K, Lead JR, Tyler CR (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish Environ Sci Technol 44:1144–1151

    Article  Google Scholar 

  3. Li C, Li K, Li H, Zhang Y, Ouyang H, Liu L, Sun C (2013) Effect of reaction temperature on crystallization of nanocrystalline zirconia synthesized by microwave-hydrothermal process J Alloy Compd 561:23–27

    Article  Google Scholar 

  4. Ali N, Bashir M, Batool S, Riaz S, Naseem S (2015) Structural and optical properties of zirconia thin films Mater Today: Proc 2:5771–5776

    Article  Google Scholar 

  5. Bashir M, Riaz S, Naseem S (2015) Structural and mechanical properties of surcose added zirconia thin films Mater Today: Proc 2:5777–5785

    Article  Google Scholar 

  6. Ahmad I, Bashir M, Sadaqat A, Riaz S, Naseem S (2015) Effects of temperature on zirconia nanoparticles during and after synthesis Mater Today: Proc 2:5786–5792

    Article  Google Scholar 

  7. Krivtsov IV, Ilkaeva MV, Avdin VV, Zherebtsov DA (2013) Properties and segregation stability of the composite silica-zirconia xerogels prepared via “acidic” and “basic” precipitation routes J Non-Cryst Solid 362:95–100

    Article  Google Scholar 

  8. Li X, Shimizu Y, Pyatenko A, Wang H, Koshizak N (2012) Tetragonal zirconia spheres fabricated by carbon-assisted selective laser heating in a liquid medium Nanotechnol 23:115602–115614

    Article  Google Scholar 

  9. Gupta TK, Bechtold JH, Kuznichi RC, Cadoff LH, Rossing BR (1977) Stabilization of tetragonal phase in polycrystalline zirconia J Mat Sci 12:2421–2426

    Article  Google Scholar 

  10. Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives Powder Technol 205:193–200

    Article  Google Scholar 

  11. Philip D (2009) Honey mediated green synthesis of gold nanoparticles Spectrochim Acta Mol Biomol Spect 73:650–653

    Article  Google Scholar 

  12. Borrell A, Salvador MD, Penaranda-Foix FL, Catala-Civera JM (2013) Microwave sintering of zirconia materials: Mechanical, and microstructural properties Int J Appl Ceram Technol 10:313–320

    Article  Google Scholar 

  13. Coovattanachai O, Tosangthum N, Morakotjinda M, Yotkaew T, Krataitong R, Vetayanugul B, Tongsri R (2010) Effect of heating rate on sintered series 300 stainless steel Songklanakarin J Sci Technol 32:163–167

    Google Scholar 

  14. Khurshid H, Tzitzios V, Colak L, Fang F, Hadjipanayis GC (2010) Metallic iron-based nanoparticles for biomedical applications J Phys: Conf Ser 200:072049–072056

    Google Scholar 

  15. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC (2013) Effects of the sintering of dental zirconia ceramics on the grain size and translucency J Adv Prosthodont 5:161–166

    Article  Google Scholar 

  16. Pedroza RC, da Silva SW, Soler MAG, Sartoratto PPC, Rezende DR, Morais PC (2005) Raman study of nanoparticle-template interaction in a CoFe2O4/SiO2-based nanocomposite prepared by sol-gel method J Magn Magn Mater 289:139–141

    Article  Google Scholar 

  17. Koo JY, Hwang S, Ahn M, Choi M, Byun D, Lee W (2016) Controlling the diameter of electrospun Yttria-stabilized zirconia nanofibers J Am Ceram Soc 99:3146–3150

    Article  Google Scholar 

  18. Panapoy M, Ksapabutr B (2008) Fabrication of Zirconia nanofibers using Zirconatrane synthesized by Oxide One-Pot Process as precursor Adv Mater Res 55-57:605–608

    Article  Google Scholar 

  19. Chattopadhyay, S; Bysakh, S; Saha, J; De, G Electrospun ZrO2 nanofibers: precursor controlled mesopore ordering and evolution of garland-like nanocrystal arrays. Dalton Trans 2018, https://doi.org/10.1039/C8DT00415C

  20. Parera JM (1992) Promotion of zirconia acidity by addition of sulfate ion. Catal Today 15:481–490

    Article  Google Scholar 

  21. Sohn JR, Kwon TD, Kim SB (2001) Characterization of Zirconium Sulfate Supported on Zirconia and Activity for Acid Catalysis. Bull Korean Chem Soc 22:1309–1315

    Google Scholar 

  22. Siddiqui MRH, Al-Wassil AI, Al-Otaibi AM, Mahfouz RM (2012) Effects of Precursor on the Morphology and Size of ZrO2 Nanoparticles, Synthesized by Sol-gel Method in Non-aqueous Medium. Mater Res 15(6):986–989

    Article  Google Scholar 

  23. You HC, Chang CM, Liu TF, Cheng CC, Chang FC, Ko F (2012) Facile preparation of sol–gel-derived ultrathin and high-dielectric zirconia films for capacitor devices. Appl Surf Sci 258:10084–10088

    Article  Google Scholar 

  24. Quig JB, The preparation and reactions of the lower chlorides and oxychlorides of silicon, Iowa State University, Retrospective Theses and Dissertations, (1926)

  25. Das VK, Das S, Thakur AJ (2012) Protection and deprotection chemistry catalyzed by zirconium oxychloride octahydrate (ZrOCl2•8H2O) Green Chem Lett Rev 5:577–586

    Article  Google Scholar 

  26. Riaz S, Bashir M, Naseem S (2015) Synthesis of stabilized zirconia hollow nanoparticles: sugar as a template J Sol-Gel Sci Technol 74:275–280

    Article  Google Scholar 

  27. American Society for Testing of Materials (1999) Designation C1327-99. Standard test method for Vickers indentation hardness of advanced ceramics. Annual Book of ASTM Standards 15.01. ASTM, Philadelphia

    Google Scholar 

  28. Ong KCG; Akbarnezhad A Thermal stresses in the microwave heating of concrete. 31st Conference on our world in concrete & structures: 16–17 August 2006, Singapore, 00031038

  29. Bashir M, Riaz S, Naseem S (2015) Fe3O4 stabilized zirconia: Structural and optical properties J Sol-Gel Sci Technol 74:281–289

    Article  Google Scholar 

  30. Redfern SE, Grimes RW, Rawlings RD (2001) The Hydroxylation of t-ZrO2 Surfaces J Mater Chem 11:449–455

    Article  Google Scholar 

  31. Chevalier J, Gremillard L, Virkar AV, Clarke DR (2009) The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends J Am Ceram Soc 92:1901–1920

    Article  Google Scholar 

  32. Riaz S, Ashraf R, Akbar A, Naseem S (2014) Microwave assisted iron oxide nanoparticles-structural and magnetic properties IEEE Trans Magn 50:2201504

    Google Scholar 

  33. Majid F, Riaz S, Naseem S (2015) Microwave-assisted sol–gel synthesis of BiFeO3 nanoparticles J Sol-Gel Sci Technol 74:310–319

    Article  Google Scholar 

  34. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect J Phys Chem 69:1238–1243

    Article  Google Scholar 

  35. Wang X, Wu G, Zhou B, Shen J (2013) Optical constants of crystallized TiO2 coatings prepared by sol-gel process J Alloy Compd 556:182–187

    Article  Google Scholar 

  36. Heo TW, Bhattacharyy S, Chen LQ (2011) A phase field study of strain energy effects on solute–grain boundary interactions Acta Mater 59:7800–7815

    Article  Google Scholar 

  37. Riaz S, Naseem S (2007) Effect of reaction temperature and time on the structural properties of Cu(In,Ga)Se2 thin films deposited by sequential elemental layer technique J Mat Sci Technol 23:499–503

    Google Scholar 

  38. Kazemi F, Saberi A, Malek – Ahmadi S, Sohrabi S, Rezaie HR, Tahriri M (2011) A novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures Ceram Silikáty 55:26–30

    Google Scholar 

  39. Igawa N, Ishii Y (2004) Crystal Structure of Metastable Tetragonal Zirconia up to 1473 K J Am Ceram Soc 84:1169–1171

    Article  Google Scholar 

  40. Cullity BD (1956) Elements of X-Ray Diffraction. Addison-Wesley, New York, USA

    Google Scholar 

  41. Suryanarayana C (2012) Mechanical behavior of emerging materials Mater Today 15:486–498

    Article  Google Scholar 

  42. Dao M, Lub L, Asaroc RJ, De Hossond JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals Acta Mater 55:4041–4065

    Article  Google Scholar 

  43. Guazzato M, Albakry M, Swain MV, Ironside J (2002) Mechanical properties of In-ceram alumina and In-ceram zirconia Int J Prosthodont 15:339–346

    Google Scholar 

  44. Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid J Ind Eng Chem 20:4215–4223

    Article  Google Scholar 

  45. Chen S, Yin Y, Wang D, Liu Y, Wang X (2005) Structures, growth modes and spectroscopic properties of small zirconia clusters J Cryst Growth 282:498–505

    Article  Google Scholar 

  46. Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S, FTIR FT (2009) Raman spectra and molecular structural confirmation of Isoniazid Ind J Pure Appl Phsys 47:12–18

    Google Scholar 

  47. Adina C, Florinela F, Abdelmoumen T, Carmen S (2010) Application of FTIR spectroscopy for a rapid determination of some hydrolytic enzymes activity on sea buckthorn substrate Rom Biotechnol Lett 15:5738–5744

    Google Scholar 

  48. Adar F (2013) Resonance Enhancement of Raman Spectroscopy: Friend or Foe? Spectroscopy 28:1–6; Sivakesava, S;Irudayaraj, J; Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. J Sci. Food Agri., 2001, 81, 683-690.

    Google Scholar 

  49. Shukla S, Seal S, Vanfleet R (2003) Sol-gel synthesis and phase evolution behavior of sterically stabilized nanocrystalline zirconia J Sol-Gel Sci Technol 27:119–136

    Article  Google Scholar 

  50. Kim DJ, Jung HJ, Yang In-S (1995) Raman Spectroscopy of Tetragonal Zirconia Solid Solutions J Am Chem Soc 76:2106–2108

    Google Scholar 

  51. Yashima M, Takahashi H, Ohtake K, Hirose T, Kakihara M, Arashi H, Ikuma Y, Suzuki Y, Yoshimura M (1996) Determination of tetragonal-cubic phase boundary of Zr1-XRXO2-X/2 (R = Nd, Sm, Y, Er and Yb) by Raman scattering J Phys Chem Solids 57:17–24

    Article  Google Scholar 

  52. Pethig R (1984) Dielectric properties of biological materials: biophysical and medical applications IEEE Trans Insul 19:453–474

    Article  Google Scholar 

  53. Pethig R (1979) Dielectric and Electronic Properties of Biological Materials. Wiley, Chichester

    Google Scholar 

  54. Nair KM; Bhalla AS; ‎Hirano SI; Suvorov D; Schwartz RW; Zhu W; Ceramic Materials and Multilayer Electronic Devices, Nashville, Tennessee, 2003.

  55. Riaz S, Shah SMH, Akbar A, Atiq S, Naseem S (2015) “Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films,”. J Sol-Gel Sci Tachnol 74:329–339

    Article  Google Scholar 

  56. Yadav SV, Sahu DK, Singh Y, Dhubkarya DC (2010) The Effect of Frequency and Temperature on Dielectric Properties of Pure Poly Vinylidene Fluoride (PVDF) Thin Films. Proc. Int. Multi Conf. Eng. Comp. Sci. March, 17-20

  57. Beg S, Varshney P (2007) Sarita, Study of electrical conductivity changes and phase transitions in TiO2 doped ZrO2 J Mater Sci 42:6274–6278

    Article  Google Scholar 

  58. Kohal RJ, Klaus G, Strub JR (2006) Zirconia-implant-supported all-ceramic crowns withstand long-term load: a pilot investigation Clin Oral Imp Res 17:565–571

    Article  Google Scholar 

  59. Barsoukov E, Macdonald JR (2005) Impedance Spectroscopy Theory, Experiment, and Applications. John Wiley & Sons, Inc., Publication, New Jersey

    Book  Google Scholar 

  60. Hwang JH, Mason TO (1998) Defect chemistry and transport properties of nanocrystalline cerium oxide Z Phys Chem 207:21–38

    Article  Google Scholar 

  61. Hwang H, McLachlan DS, Mason TO (1999) Brick Layer Model Analysis of Nanoscale-to-Microscale Cerium Dioxide J Electroceram 3:7–16

    Article  Google Scholar 

  62. Das R, Sarkar T, Mandal K (2012) Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis J Phys D: Appl Phys 45:455002

    Article  Google Scholar 

  63. Verma KC, Ram M, Singh J, Kotnala RK (2011) Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3(Fe0.012Ti0.988)O3 nanoparticles J Alloy Compd 509:4967–4971

    Article  Google Scholar 

  64. Kim SK, Miyayma M, Yanagida H (1996) Electrical and anisotropy and a plausible explanation for dielectric anomly of Bi4Ti3O12 single crystal. Mater Res Bull 31:121–131

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for research grants provided by Higher Education Commission (HEC) Pakistan under project 45/2008/332 and University of the Punjab under project D/4112/Est./73. All authors are affiliated to same organization with the same funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Riaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhari, B.S., Imran, M., Bashir, M. et al. Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers. J Sol-Gel Sci Technol 87, 554–567 (2018). https://doi.org/10.1007/s10971-018-4749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4749-0

Keywords

Navigation