Abstract
This work reports the preparation of bacterial cellulose (BC) membranes with self-cleaning properties. SiO2@TiO2 (anatase) spherical nanocomposites (around 50 nm in diameter) were prepared by sol–gel process and were successfully immobilized into the BC membrane, in wet and dry states, by post-grafting method, following two different methodologies: dip-coating and spin-coating. Characterization techniques included Raman scattering, energy-dispersive X-ray spectroscopies (EDS), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The photocatalytic activity was higher in the BC membrane in the wet state, presenting a good self-cleaning performance (fast methyl violet 2B dye decomposition in 30 min). The functional BC membranes with self-cleaning properties also presented high resistance to washing, high chemical stability, and the original features (color and texture) were maintained.

Highlights
-
Development of novel functional bacterial cellulose membranes with self-cleaning properties.
-
Decomposition of methyl violet 2B dye in solution through a photocatalytic process.
-
High resistance to washing (self-cleaning performance).
-
Original features of the membranes (color and texture) maintained.
-
Significant reduction of cleaning actions, allowing a reduction in costs and greater durability of the bacterial cellulose membrane.
-
Environmentally friendly cellulose membrane.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.









References
- 1.
Pecorano E, Manzani D, Messadeq Y, Ribeiro S J L (2008) In: Belgacem M N, Gandini A (ed) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier Science, Amsterdam, The Netherlans.
- 2.
Jozala AF, de Lencastre-Novales LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa-Jr A, Grotto D, Gerenutti M, Chaud MV (2016) Appl Microbiol Biotechnol 100:2063
- 3.
Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Compos A 43:973
- 4.
Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) J Mater Sci 41:5646
- 5.
Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) J Sol-Gel Sci Technol 46:363
- 6.
Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghyo J, Messaddeq Y, Ribeiro SJL (2008) Mat Sci Eng C 28:515
- 7.
Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) Mater Sci 25:2997
- 8.
Legnani C, Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremosa M (2008) Thin Sol Films 517:1016
- 9.
Yano Y, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 17:153
- 10.
Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CAJ, Messaddeq Y, Ribeiro SJL (2011) Carbohydr Polym 83:1279
- 11.
Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017) RSC Adv 7:47662
- 12.
Ullah S, Ferreira-Neto EP, Pasa AA, Alcântara CCJ, Acuña JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues-Filho UP (2015) Appl Catal B 179:333
- 13.
Pinto ERP, Barud HS, Silva RR, Palmieri M, Polito WL, Calil VL, Cremosa M, Ribeiro SJL, Messaddeq Y (2015) J Mater Chem C 3:11581
- 14.
Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515
- 15.
Augustynski J (1993) Electrochim Acta 38:43
- 16.
Mandzy N, Grulke E, Druffel T (2005) Powder Technol 160:121
- 17.
Hanaor DAH, Assadi MHN, Li S, Yu AB, Sorrell CC (2012) Comput Mech 50:185
- 18.
Raj K, Viswanathan B (2009) Indian J Chem 48:1378
- 19.
Hirano M, Joji T, Inagaki M, Wata H (2004) J Am Ceram Soc 87:35
- 20.
Hirano M, Nakahara C, Ota K, Tainaike O, Inagaki M (2003) J Solid State Chem 170:39
- 21.
Herrmann J (1999) Catal Today 53:115
- 22.
Hirano M, Ota K, Iwata H (2004) Chem Mater 16:3725
- 23.
Banerjee S, Gopal J, Muraleedharan P, Tyagi A, Raj B (2006) Curr Sci 90:1383
- 24.
Diebold U (2003) Surf Sci Rep 48:53
- 25.
Barringer EA, Bowen HK (1982) J Am Ceram Soc 65:199
- 26.
Hirano M, Nakahara C, Ota K, Inagaki M (2002) J Am Ceram Soc 85:1333
- 27.
Ding XZ, Liu XH (1996) J Mater Sci Lett 15:1789
- 28.
Son S, Hwang SH, Kim C, Yun JY, Jang J (2013) ACS Appl Mater Interfaces 5:4815
- 29.
Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1997) Catal Lett 45:165
- 30.
Iler R (1978) The chemistry of silica. Wiley-Interscience, New York
- 31.
Fink A, Stöber W, Bohnn E (1968) J Colloid Interface Sci 26:62
- 32.
Periyat P, Baiju K, Mukundan P, Pillai P, Warrier KGK (2008) Appl Catal A Gen 349:13
- 33.
Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Matter Lett 57:2989
- 34.
Friesen D, Morello L, Headley JV, Lanford CH (2000) Photochem Photobiol A Chem 133:213
- 35.
Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud A (2007) J Mater Chem 17:3504
- 36.
Kobler J, Möller K, Bein T (2008) ACS Nano 2:791
- 37.
Möller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605
- 38.
Möller K, Kobler J, Bein T (2007) J Mater Chem 17:624
- 39.
Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons Ltd, Chichester, UK
- 40.
Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) J Nanomater 2011:10
- 41.
Juma AO, Acik IO, Mikli V, Mere A, Krunks M (2015) Thin Solid Films 594:287
- 42.
Larson I, Drummond CJ, Chan DYC, Grieser F (1993) J Am Chem Soc 115:11885
- 43.
Subramaniam K, Yiacoumi S, Tsouri C (2000) Colloids Surf A 177:133
- 44.
Papp J, Soled S, Dwight K, Wold A (1994) Chem Mater 6:496
Acknowledgements
This work has been financially supported by Fundação de Amparo à pesquisa do estado de São Paulo (FAPESP), through project 2015/12908-2. ASM is thankful to FAPESP for a grant. The authors thank André Tobello Foundation for effering the strain Gluconacetobacter xylinum (ATCC23760) LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL-JEM 2100 F STEM microscope and Dr. Sajjad Ullah for help in XRFA measurements.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Monteiro, A.S., Domeneguetti, R.R., Wong Chi Man, M. et al. Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties. J Sol-Gel Sci Technol 89, 2–11 (2019). https://doi.org/10.1007/s10971-018-4744-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Functional bacterial cellulose membrane
- SiO2@TiO2 (anatase) nanocomposites
- Photocatalytic activity
- Self-cleaning properties
- Dip-coating
- Spin-coating