Journal of Sol-Gel Science and Technology

, Volume 89, Issue 1, pp 2–11 | Cite as

Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties

  • A. S. Monteiro
  • R. R. Domeneguetti
  • M. Wong Chi Man
  • H. S. Barud
  • E. Teixeira-Neto
  • S. J. L. RibeiroEmail author
Brief Communication: Functional coatings, thin films, and membranes (including deposition techniques)


This work reports the preparation of bacterial cellulose (BC) membranes with self-cleaning properties. SiO2@TiO2 (anatase) spherical nanocomposites (around 50 nm in diameter) were prepared by sol–gel process and were successfully immobilized into the BC membrane, in wet and dry states, by post-grafting method, following two different methodologies: dip-coating and spin-coating. Characterization techniques included Raman scattering, energy-dispersive X-ray spectroscopies (EDS), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The photocatalytic activity was higher in the BC membrane in the wet state, presenting a good self-cleaning performance (fast methyl violet 2B dye decomposition in 30 min). The functional BC membranes with self-cleaning properties also presented high resistance to washing, high chemical stability, and the original features (color and texture) were maintained.


  • Development of novel functional bacterial cellulose membranes with self-cleaning properties.

  • Decomposition of methyl violet 2B dye in solution through a photocatalytic process.

  • High resistance to washing (self-cleaning performance).

  • Original features of the membranes (color and texture) maintained.

  • Significant reduction of cleaning actions, allowing a reduction in costs and greater durability of the bacterial cellulose membrane.

  • Environmentally friendly cellulose membrane.


Functional bacterial cellulose membrane SiO2@TiO2 (anatase) nanocomposites Photocatalytic activity Self-cleaning properties Dip-coating Spin-coating 



This work has been financially supported by Fundação de Amparo à pesquisa do estado de São Paulo (FAPESP), through project 2015/12908-2. ASM is thankful to FAPESP for a grant. The authors thank André Tobello Foundation for effering the strain Gluconacetobacter xylinum (ATCC23760) LNNano-CNPEM (Campinas, Brazil) for the use of the JEOL-JEM 2100 F STEM microscope and Dr. Sajjad Ullah for help in XRFA measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pecorano E, Manzani D, Messadeq Y, Ribeiro S J L (2008) In: Belgacem M N, Gandini A (ed) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier Science, Amsterdam, The Netherlans.Google Scholar
  2. 2.
    Jozala AF, de Lencastre-Novales LC, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa-Jr A, Grotto D, Gerenutti M, Chaud MV (2016) Appl Microbiol Biotechnol 100:2063CrossRefGoogle Scholar
  3. 3.
    Barud HS, Caiut JMA, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2012) Compos A 43:973CrossRefGoogle Scholar
  4. 4.
    Maeda H, Nakajima M, Hagiwara T, Sawaguchi T, Yano S (2006) J Mater Sci 41:5646CrossRefGoogle Scholar
  5. 5.
    Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) J Sol-Gel Sci Technol 46:363CrossRefGoogle Scholar
  6. 6.
    Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghyo J, Messaddeq Y, Ribeiro SJL (2008) Mat Sci Eng C 28:515CrossRefGoogle Scholar
  7. 7.
    Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) Mater Sci 25:2997CrossRefGoogle Scholar
  8. 8.
    Legnani C, Legnani C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremosa M (2008) Thin Sol Films 517:1016CrossRefGoogle Scholar
  9. 9.
    Yano Y, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Adv Mater 17:153CrossRefGoogle Scholar
  10. 10.
    Barud HS, Souza JL, Santos DB, Crespi MS, Ribeiro CAJ, Messaddeq Y, Ribeiro SJL (2011) Carbohydr Polym 83:1279CrossRefGoogle Scholar
  11. 11.
    Khalid A, Ullah H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017) RSC Adv 7:47662CrossRefGoogle Scholar
  12. 12.
    Ullah S, Ferreira-Neto EP, Pasa AA, Alcântara CCJ, Acuña JJS, Bilmes SA, Ricci MLM, Landers R, Fermino TZ, Rodrigues-Filho UP (2015) Appl Catal B 179:333CrossRefGoogle Scholar
  13. 13.
    Pinto ERP, Barud HS, Silva RR, Palmieri M, Polito WL, Calil VL, Cremosa M, Ribeiro SJL, Messaddeq Y (2015) J Mater Chem C 3:11581CrossRefGoogle Scholar
  14. 14.
    Fujishima A, Zhang X, Tryk D (2008) Surf Sci Rep 63:515CrossRefGoogle Scholar
  15. 15.
    Augustynski J (1993) Electrochim Acta 38:43CrossRefGoogle Scholar
  16. 16.
    Mandzy N, Grulke E, Druffel T (2005) Powder Technol 160:121Google Scholar
  17. 17.
    Hanaor DAH, Assadi MHN, Li S, Yu AB, Sorrell CC (2012) Comput Mech 50:185CrossRefGoogle Scholar
  18. 18.
    Raj K, Viswanathan B (2009) Indian J Chem 48:1378Google Scholar
  19. 19.
    Hirano M, Joji T, Inagaki M, Wata H (2004) J Am Ceram Soc 87:35CrossRefGoogle Scholar
  20. 20.
    Hirano M, Nakahara C, Ota K, Tainaike O, Inagaki M (2003) J Solid State Chem 170:39CrossRefGoogle Scholar
  21. 21.
    Herrmann J (1999) Catal Today 53:115CrossRefGoogle Scholar
  22. 22.
    Hirano M, Ota K, Iwata H (2004) Chem Mater 16:3725CrossRefGoogle Scholar
  23. 23.
    Banerjee S, Gopal J, Muraleedharan P, Tyagi A, Raj B (2006) Curr Sci 90:1383Google Scholar
  24. 24.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  25. 25.
    Barringer EA, Bowen HK (1982) J Am Ceram Soc 65:199CrossRefGoogle Scholar
  26. 26.
    Hirano M, Nakahara C, Ota K, Inagaki M (2002) J Am Ceram Soc 85:1333CrossRefGoogle Scholar
  27. 27.
    Ding XZ, Liu XH (1996) J Mater Sci Lett 15:1789CrossRefGoogle Scholar
  28. 28.
    Son S, Hwang SH, Kim C, Yun JY, Jang J (2013) ACS Appl Mater Interfaces 5:4815CrossRefGoogle Scholar
  29. 29.
    Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1997) Catal Lett 45:165CrossRefGoogle Scholar
  30. 30.
    Iler R (1978) The chemistry of silica. Wiley-Interscience, New YorkGoogle Scholar
  31. 31.
    Fink A, Stöber W, Bohnn E (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  32. 32.
    Periyat P, Baiju K, Mukundan P, Pillai P, Warrier KGK (2008) Appl Catal A Gen 349:13CrossRefGoogle Scholar
  33. 33.
    Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003) Matter Lett 57:2989CrossRefGoogle Scholar
  34. 34.
    Friesen D, Morello L, Headley JV, Lanford CH (2000) Photochem Photobiol A Chem 133:213CrossRefGoogle Scholar
  35. 35.
    Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud A (2007) J Mater Chem 17:3504CrossRefGoogle Scholar
  36. 36.
    Kobler J, Möller K, Bein T (2008) ACS Nano 2:791CrossRefGoogle Scholar
  37. 37.
    Möller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605CrossRefGoogle Scholar
  38. 38.
    Möller K, Kobler J, Bein T (2007) J Mater Chem 17:624CrossRefGoogle Scholar
  39. 39.
    Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons Ltd, Chichester, UKGoogle Scholar
  40. 40.
    Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) J Nanomater 2011:10CrossRefGoogle Scholar
  41. 41.
    Juma AO, Acik IO, Mikli V, Mere A, Krunks M (2015) Thin Solid Films 594:287CrossRefGoogle Scholar
  42. 42.
    Larson I, Drummond CJ, Chan DYC, Grieser F (1993) J Am Chem Soc 115:11885CrossRefGoogle Scholar
  43. 43.
    Subramaniam K, Yiacoumi S, Tsouri C (2000) Colloids Surf A 177:133CrossRefGoogle Scholar
  44. 44.
    Papp J, Soled S, Dwight K, Wold A (1994) Chem Mater 6:496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Monteiro
    • 1
  • R. R. Domeneguetti
    • 1
  • M. Wong Chi Man
    • 2
  • H. S. Barud
    • 3
  • E. Teixeira-Neto
    • 4
  • S. J. L. Ribeiro
    • 1
    Email author
  1. 1.Institute of Chemistry, São Paulo State UniversityUNESPAraraquaraBrazil
  2. 2.Institut Charles Gerhardt MontpellierUMR5253 CNRS-ENSCM-UMMontpellierFrance
  3. 3.University of Araraquara – UNIARAAraraquaraBrazil
  4. 4.Brazilian Nanotechnology National Laboratory (LNNano)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil

Personalised recommendations