• Brief Communication: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:

Importance of buffering nanolayer position in Layer-by-Layer assembly on titania based hybrid photoactivity

Abstract

Nanoarchitecture of layer-by-layer (LbL) films is a convenient and simple way to control the photoelectrochemical properties of the semiconductor films. Hereby, we used the combination of polystyrenesulfonate (PSS) and polyethyleneimine (PEI) deposited on the TiO2 film for controlling the photochemical response of the hybrid system. Photogenerated protons on the TiO2 surface are responsible for the acidity change near the irradiated surface. We investigated that the photogenerated protons being absorbed by PEI spatially separated from the TiO2 surface with the nanoscale-thick PSS layer (with thickness ca. 5 nm) lead to the sufficient decrease in photoactivity of the hybrid system TiO2/PSS/PEI ca. 4 times in comparison with pristine TiO2. PEI nanolayer being deposited directly on the TiO2 surface can decrease the photoactivity of the system ca. 2–2.5 times.

We show that the photoactivity of the sol–gel titania can be regulated by self-assembly of polyelectrolyte nanolayersand nanoarchitecture of these layers. The work highlights the importance of well-defined colloidal units for inkjet printing of gradient surface.

Highlights

  • Deposition of TiO2 photoactive layer by inkjet printing.

  • Investigation of photoactivity of the hybrid system based on titanium dioxide and polyelectrolyte layers (polystyrenesulfonate PSS, polyethyleneimine PEI).

  • Variation in “proton sponge” activity of PEI depending on the distance from TiO2 surface.

  • PEI nanolayer being deposited directly on the TiO2 surface can decrease the photoactivity of the system ca. 2–2.5 times, nanoarchitecture PSS/PEI – 4–4.5 times in comparison with pristine TiO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Decher G, Schlenoff JB (2006) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim

    Google Scholar 

  2. 2.

    Mauser T, Dejugnat C, Sukhorukov G (2004) Reversible pH-dependent properties of multilayer microcapsules made of weak polyelectrolytes. Macromol Rap Commun 25:1781–1785

    Article  Google Scholar 

  3. 3.

    Andreeva DV, Sviridov DV, Masik A, Möhwald H, Skorb EV (2012) Nanoengineered metal surface capsules: construction of a metal-protection system. Small 8:820–825

    Article  Google Scholar 

  4. 4.

    Ilyas S, de Grooth J, Nijmeijer K, de Vos WM (2014) Multifunctional polyelectrolyte multilayers as nanofiltration membranes and as sacrificial layers for easy membrane cleaning. J Colloid Interface Sci 446:386–393

    Article  Google Scholar 

  5. 5.

    Jiang B, Barnett JB, Li B, (2009) Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems Nanotechnol Sci Appl 2:21–27

    Article  Google Scholar 

  6. 6.

    Séon L, Lavalle P, Schaaf P, Boulmedais F (2015) Polyelectrolyte multilayers: a versatile tool for preparing antimicrobial coatings. Langmuir 31(47):12856–12872

    Article  Google Scholar 

  7. 7.

    Minnikanti S, Gangopadhyay, Reyes DR (2014) Polyelectrolyte multilayers in microfluidic systems for biological applications. Polymers 6(8):2100–2115

    Article  Google Scholar 

  8. 8.

    Berwald S & Meier-Haack J (2002). In: Tripathy SK, Kumar J, Nalwa HS (eds) Applications of polyelectrolytes and theoretical models. American Scientific Publication, Stevenson Ranch, CA

  9. 9.

    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomponents. Science 277(5330):1232–1237

    Article  Google Scholar 

  10. 10.

    Richardson JJ, Bjornmalm M, Caruso F (2014) Technology-driven layer-by-layer assembly of nanofilms. Science 348:aaa2491

    Article  Google Scholar 

  11. 11.

    Grubb PM, Subbaraman H, Park S, Akinwande D, Chen RT (2017) Inkjet printing of high performance transistors with micron order chemically set gaps. Sci Rep 1202. https://doi.org/10.1038/s41598-017-01391-2

  12. 12.

    Alamán J, Alicante R, Peña JI, Sánchez-Somolinos C (2016) Inkjet printing of functional materials for optical and photonic applications. Materials (Basel) 9(11):910

    Article  Google Scholar 

  13. 13.

    Gao M, Li L, Song Y (2017) Inkjet printing wearable electronic devices. J Mater Chem C 5:2971–2993

    Article  Google Scholar 

  14. 14.

    Mehta S, Murugeson S, Prakash BD (2016) Microbes based printing for fabrication of microlenses for organic light emitting diodes. Org Electron 35:199–207

    Article  Google Scholar 

  15. 15.

    Safaryan SM, Yakovlev AV, Vinogradov AV, Vinogradov VV (2017) Inkjet printing of the chromogen free oxidase based optical biosensors. Sens Actuators B: Chem 251:746–752

    Article  Google Scholar 

  16. 16.

    Yakovlev AV, Milichko AV, Vinogradov VV, Vinogradov AV (2016) Inkjet color printing by interference nanostructures. ACS Nano 10:3078–3086

    Article  Google Scholar 

  17. 17.

    Langlet M, Kim A, Audier M, Herrmann J (2002) Sol–gel preparation of photocatalytic TiO2 films on polymer substrates. J Sol–Gel Sci Technol 25:223–234

    Article  Google Scholar 

  18. 18.

    Maltanava HM, Poznyak SK, Andreeva DV, Quevedo MC, Bastos AC, Tedim J, Ferreira MGS, Skorb EV (2017) Light-induced proton pumping with a semiconductor: vision for photoproton lateral separation and robust manipulation. ACS Appl Mater Interf 9(28):24282–24289

    Article  Google Scholar 

  19. 19.

    Gensel J, Borke T, Pazos-Perez N, Fery A, Andreeva DV, Betthausen E, Müller AHE, Möhwald H, Skorb EV (2012) Cavitation engineered 3D sponge networks and their application in active surface construction. Adv Mater 24:985

    Article  Google Scholar 

  20. 20.

    Ulasevich SA, Brezhneva N, Zhukova Y, Möhwald H, Fratzl P, Schacher FH, Sviridov DV, Andreeva DV, Skorb EV (2016) Switching the stiffness of polyelectrolyte assembly by light to control behavior of supported cells. Macromol Biosci 16:1422–1431

    Article  Google Scholar 

  21. 21.

    Andreeva DV, Melnyk I, Baidukova O, Skorb EV (2016) Local pH gradient initiated by light on TiO2 for light-triggered modulation of polyhistidine-tagged proteins. ChemElectroChem 3:1306–1310

    Article  Google Scholar 

  22. 22.

    Andreeva DV, Kollath A, Brezhneva N, Sviridov DV, Cafferty BJ, Möhwald H, Skorb EV (2017) Using a chitosan nanolayer as an efficient pH buffer to protect pH-sensitive supramolecularassemblies. PhysChemChemPhys 19:23843–23848

    Google Scholar 

  23. 23.

    Moffatt S, Wiehle S, CristianoR J (2016) A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Ther 13:1512–1523

    Article  Google Scholar 

  24. 24.

    Liang W-J, Wang F, Wen M, Jian J-X, Wang X-Z, Chen B, Tung C-H, Wu L-Z, (2015) Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. Chem - A Eur J 21(8):3187–3192

    Article  Google Scholar 

  25. 25.

    Park SH, Yang HN, Lee DC, Park KW, Kim WJ (2014) Electrochemical properties of polyethyleneimine-functionalized Pt-PEI/carbon black as a catalyst for polymer electrolyte membrane fuel cell. ElectrochimActa 125:141–148

    Article  Google Scholar 

  26. 26.

    Nakamura M, Sato N, Hoshi N, Sakata O (2011) Outer Helmholtz plane of the electrical double layer formed at the solid electrode-liquid interface ChemPhysChem 12:1430–1434

    Article  Google Scholar 

  27. 27.

    Skorb EV, Ustinovich EA, Kulak AI, Sviridov DV (2008) Photocatalytic activity of TiO2:In2O3nanocomposite films towards the degradation of arylmethane and azo dyes. JPhotochemPhotobiol A: Chem 193:97–102

    Article  Google Scholar 

  28. 28.

    Maltanava H, Poznyak SK, Andreeva DV, Quevedo MC, Bastos AC, Tedim J, Ferreira MGS, Skorb EV (2017) Light induced proton pumping with a semiconductor: vision for PhotoProton lateral separation and robust manipulation. ACS Appl Mater Interfaces 9:24282–24289

    Article  Google Scholar 

  29. 29.

    Yakovlev AV, Milichko VA, Vinogradov VV, Vinogradov AV (2016) Inkjet color printing by interference nanostructures. ACS Nano 10(3):3078–3086

    Article  Google Scholar 

  30. 30.

    Skorb EV, Möhwald H, Andreeva DV (2017) How can one controllably use of natural ΔpH in polyelectrolyte multilayers? Adv Mater Interfaces 4(1):1600282. 1-15

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by RSCF grant no. 17-79-20186 (formation and study of photoactivity of hybrid structures).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Nikitina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brezhneva, N., Nikitina, A., Ryzhkov, N. et al. Importance of buffering nanolayer position in Layer-by-Layer assembly on titania based hybrid photoactivity. J Sol-Gel Sci Technol 89, 92–100 (2019). https://doi.org/10.1007/s10971-018-4728-5

Download citation

Keywords

  • TiO2
  • Layer-by-layer assembly
  • Photoactivity
  • Sol–gel
  • Polyelectrolytes