Skip to main content
Log in

Selective aerobic photocatalytic oxidation of benzyl alcohol over spherical structured WO3/TiO2 nanocomposite under visible light irradiation

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2/WO3 nanocomposite with nanodisk morphology was prepared and successfully used as a photocatalyst. The nanocomposite was obtained via sonochemical and hydrothermal methods, using pomegranate juice as a capping agent. The products were characterized by FE-SEM imaging, BET, EDAX spectroscopy, X-ray diffraction, DRS, and FT-IR spectroscopy. TiO2/WO3 nanocomposite showed high sensitivity to absorb visible light in compared to TiO2. In an optimized condition, the yield of the aerobic photocatalytic oxidation of benzyl alcohol derivatives reached to 65% for the TiO2/WO3 nanocomposite, while the conversion percent of the derivatives was less than 8% and 50% on the TiO2 and WO3 nanoparticles, respectively. Experimental results were supported by density functional theory (DFT) calculations. The DFT results in several solvents of different dielectric constants, confirmed the strong dependence of light absorption and photocatalytic activity to adsorption energy of the substrates on the surface of the nanoparticles (Ead). In addition, the theoretical results showed an inverse correlation between the adsorption energy of benzyl alcohol and its conversion percent, accordance to the experimental trend.

Highlights

  • Significant increasing visible light sensitization.

  • Enhancement of photocatalytic selectivity, conversion percent and reaction rate.

  • Aerobic photocatalytic oxidation.

  • Decreasing band gap to 2.9 eV in the TiO2/WO3.

  • Supporting the enhancement of photocatalytic performance by DFT calculations.

  • Inverse proportional of |Ead| between adsorption energy of benzyl alcohol and the photocatalytic reaction yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kolesov G, Vinichenko D, Tritsaris GA et al. (2015) Anatomy of the photochemical reaction: excited-state dynamics reveals the C-H acidity mechanism of methoxy photo-oxidation on titania. J Phys Chem Lett 6:1624–1627. https://doi.org/10.1021/acs.jpclett.5b00429

    Article  Google Scholar 

  2. Tsukamoto D, Shiraishi Y, Sugano Y et al. (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315

    Article  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21. https://doi.org/10.1016/S1389-5567(00)00002-2

    Article  Google Scholar 

  4. Zhang Y, Tang B, Wu Z et al. (2016) Glucose oxidation over ultrathin carbon-coated perovskite modified TiO2 nanotube photonic crystals with high-efficiency electron generation and transfer for photoelectrocatalytic hydrogen production. Green Chem 18:2424–2434. https://doi.org/10.1039/C5GC02745D

    Article  Google Scholar 

  5. Reisner E, Powell DJ, Cavazza C et al. (2009) Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO 2 nanoparticles. J Am Chem Soc 131:18457–18466

    Article  Google Scholar 

  6. Li S, Zhao Z, Huang Y et al. (2015) Hierarchically structured WO3–CNT@TiO2NS composites with enhanced photocatalytic activity. J Mater Chem A Mater Energy Sustain 3:5467–5473. https://doi.org/10.1039/C4TA06883A

    Article  Google Scholar 

  7. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. https://doi.org/10.1021/j100102a038

    Article  Google Scholar 

  8. Anpo M, Dohshi S, Kitano M et al. (2005) The preparation and charachterization of highly efficient titanium oxid-based. Annu Rev Mater Res 35:1–27. https://doi.org/10.1146/annurev.matsci. 35.100303.121340

    Article  Google Scholar 

  9. Nagaveni K, Hegde MS, Madras G (2004) Structure and photocatalytic activity of Ti 1- x MxO2 (δ (M) W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J Phys Chem B 2:20204–20212

    Article  Google Scholar 

  10. Maryin C, Martin I, Rives V, Palmisano L, Schiavello M (1992) Structural and surface characterization of the polycrystalline system CrxO/TiO2 employed for photoreduction of dinitrogen and photodegradation of phenol surface area determination and porosity X-Ray diffractometry apparatuses and procedures for the ln. J Catal 134:434–444

  11. Yang Y, Li X, Chen J, Wang L (2004) Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol A 163:517–522. https://doi.org/10.1016/j.jphotochem.2004.02.008

    Article  Google Scholar 

  12. Devi LG, Murthy ÆBN (2008) Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light. Catal Lett 125:320–330. https://doi.org/10.1007/s10562-008-9568-4

    Article  Google Scholar 

  13. Do YR, Lee W, Dwight K, Wold A (1994) The effect of WO3 on the photocatalytic activity of TiO2. J Solid State Chem 108:198–201. https://doi.org/10.1006/jssc.1994.1031

    Article  Google Scholar 

  14. Palmisano L, Augugliaro V, Sclafani A, Schiavello M (1988) Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J Phys Chem 92:6710–6713. https://doi.org/10.1021/j100334a044

    Article  Google Scholar 

  15. Xiao M, Wang L, Huang X et al. (2009) Synthesis and characterization of WO3/titanate nanotubes nanocomposite with enhanced photocatalytic properties. J Alloy Compd 470:486–491. https://doi.org/10.1016/j.jallcom.2008.03.003

    Article  Google Scholar 

  16. Nakayama N, Hayashi T (2007) Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index. J Appl Polym Sci 105:3662–3672. https://doi.org/10.1002/app

    Article  Google Scholar 

  17. Xu QFeng, Yang Liu, Lin FJ, Mondal B, AML (2013) A superhydrophobic TiO2 -polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. Appl Mate Inter 34:1–32. https://doi.org/10.1021/am401668y

    Google Scholar 

  18. Yao Y, Li G, Ciston S et al. (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42:4952–4957. https://doi.org/10.1021/es800191n

    Article  Google Scholar 

  19. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:2233–2239. https://doi.org/10.1002/adma.200802738

    Article  Google Scholar 

  20. Paramasivam I, Nah YC, Das C et al. (2010) WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chem Eur J 16:8993–8997. https://doi.org/10.1002/chem.201000397

    Article  Google Scholar 

  21. Puddu V, Li G (2007) Novel one step hydrothermal synthesis of TiO2/WO3 nanocomposites with enhanced photocatalytic activity. Chem Commun 6:4749–4751. https://doi.org/10.1039/b711559h

    Article  Google Scholar 

  22. Song H, Jiang H, Liu X, Meng G (2006) Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation. J Photochem Photobiol A 181:421–428. https://doi.org/10.1016/j.jphotochem.2006.01.001

    Article  Google Scholar 

  23. Yurdakal S, Palmisano G, Loddo V, Palmisano L (2009) Cutting-edge research for a greener sustainable future Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature. Green Chem 11:437–592. https://doi.org/10.1039/b819862d

    Article  Google Scholar 

  24. Paramasivam I, Nah Y, Das C et al. (2010) WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chem Eur J 16:8993–8997. https://doi.org/10.1002/chem.201000397

    Article  Google Scholar 

  25. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J Am Chem Soc 123:10639–10649. https://doi.org/10.1021/ja011315x

    Article  Google Scholar 

  26. Baeck SH, Choi KS, Jaramillo TF et al. (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1273. https://doi.org/10.1002/adma.200304669

    Article  Google Scholar 

  27. Feng M, Pan AL, Zhang HR et al. (2005) Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1898434

    Google Scholar 

  28. Wang F, Di Valentin C, Pacchioni G (2011) Electronic and structural properties of WO3: a systematic hybrid DFT study. J Phys Chem C 115:8345–8353. https://doi.org/10.1021/jp201057m

    Article  Google Scholar 

  29. Wang F, DiValentin C, Pacchioni G (2012) Rational band gap engineering of WO3 photocatalyst for visible light water splitting. ChemCatChem 4:476–478. https://doi.org/10.1002/cctc.201100446

    Article  Google Scholar 

  30. Akurati KK, Vital A, Dellemann J, Michalow K (2008) Flame-made WO3/TiO2 nanoparticles: relation between surface acidity, structure and photocatalytic activity. Appl Catal B:Environ 79:53–62. https://doi.org/10.1016/j.apcatb.2007.09.036

    Article  Google Scholar 

  31. Enache DI, Edwards JK, Landon P et al. (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/ TiO2 catalysts. Science 311:362–365. https://doi.org/10.1126/science.1120560

    Article  Google Scholar 

  32. Zhang M, Wang Q, Chen C et al. (2009) Oxygen atom transfer in the photocatalytic oxidation of alcohols bytio2: oxygen isotope studies. Angew Chem - Int Ed 48:6081–6084. https://doi.org/10.1002/anie.200900322

    Article  Google Scholar 

  33. Zhang M, Chen C, Ma W, Zhao J (2008) Zuschriften visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew Chem Int Ed 120:9876–9879. https://doi.org/10.1002/ange.200803630

    Article  Google Scholar 

  34. Wang Q, Zhang M, Chen C et al. (2010) Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a brønsted acid. Angew Chem Int Ed 49:7976–7979. https://doi.org/10.1002/anie.201001533

    Article  Google Scholar 

  35. Bawaked S, He Q, Dummer NF et al. (2011) Catalysis science and technology selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catal Sci Technol 1:747–759. https://doi.org/10.1039/c1cy00122a

    Article  Google Scholar 

  36. Xiao X, Jiang J, LZ (2010) Thermally-driven processes on rutile TiO2(1 1 0)-(1×1): a direct view at the atomic scale. Prog Surf Sci 85:161–205. https://doi.org/10.1016/j.apcatb.2013.05.047

    Article  Google Scholar 

  37. Stevens RV, Chapman KT (1979) Conveniet and inexpensine procedure for oxidation of secondary alcoholto ketones. J Org Chem 45:2030–2032

    Article  Google Scholar 

  38. Holum JR (1961) Study of the chromium (V1) oxide-pyridine complex. J Org Chem 26:4814–4816

    Article  Google Scholar 

  39. Lee DJ, Spitzer UA (1970) The aqueous dichromate oxidation of primary alcohol. J Org Chem 35:3589–3590

    Article  Google Scholar 

  40. Highet RJ, Wildman WC (1955) Solid manganese dioxide as an oxidizing agent. J Am Chem Soc 1262:8–10

    Google Scholar 

  41. Menger FM, Lee C (1981) Synthetically useful oxidations at solid sodium permanganate surfaces. Tetrahedron Lett 22:1655–1656

  42. Berokwitz LM, Rylander PN (1958) Use of ruthenium tetroxide as a multi-purpose oxidant. J Org Chem 80:6682–6684

    Google Scholar 

  43. Tanaka A, Hashimoto K, Kominami H (2012) Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 134:14526–14533. https://doi.org/10.1021/ja305225s

    Article  Google Scholar 

  44. Fujihira M, Saltoh Y, Osa T (1981a) Heterogenous photocatalytic oxidation of aromatic compounds on TiO2. Nature 293:206–208.

  45. Yurdakal S, Palmisano G, Loddo V et al. (2008) Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J Am Chem Soc 130:1568–1569

    Article  Google Scholar 

  46. Augugliaro V, Caronna T, Loddo V et al. (2008) Oxidation of aromatic alcohols in irradiated aqueous suspensions of commercial and home-prepared rutile TiO2: a selectivity study. Chem-A Eur J 14:4640–4646. https://doi.org/10.1002/chem.200702044

    Article  Google Scholar 

  47. Palmisano G, Addamo M, Augugliaro V, et al (2006) Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Chem Commun 1012–1014 https://doi.org/10.1039/b515853b

  48. Addamo M, Augugliaro V, Bellardita M et al. (2008) Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2. Catal Lett 126:58–62. https://doi.org/10.1007/s10562-008-9596-0

    Article  Google Scholar 

  49. Spasiano D, Del Pilar Prieto Rodriguez L, Olleros JC et al. (2013) TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor. Appl Catal B Environ 136–137:56–63. https://doi.org/10.1016/j.apcatb.2013.01.055

    Article  Google Scholar 

  50. Naya S, Inoue A, Tada H (2010) Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium (IV) dioxide and surfactant. J Am Chem Soc 132:6292–6293

    Article  Google Scholar 

  51. Tang Z, Zhang Y, Xu Y (2012) Tuning the optical property and photocatalytic performance of titanate nanotube toward selective oxidation of alcohols under ambient conditions. Appl Mate Inter 4:1512–1520

    Article  Google Scholar 

  52. Safaei E, Mohebbi S (2016) Photocatalytic activity of nanohybrid Co-TCPP@TiO2/WO3 in aerobic oxidation of alcohols under visible light. J Mater Chem A 4:3933–3946. https://doi.org/10.1039/C5TA09357K

    Article  Google Scholar 

  53. Li Y, Liu J, Jia Z (2006) Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process. Mater Lett 60:1753–1757

    Article  Google Scholar 

  54. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J(Nat Sci) 42:357–361

    Google Scholar 

  55. Wang J, Khoo E, Lee PS, Ma J (2010) Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J Phys Chem C 113:9655–9658. https://doi.org/10.1021/jp901650v

    Article  Google Scholar 

  56. Wang J, Khoo E, Lee PS, Ma J (2008) Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 112:14306–14312

    Article  Google Scholar 

  57. Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Enhanced photocatalytic performance of WO3 loaded Ag–ZnO for acid black 1 degradation by UV-A light. Mol Catal A Chem 366:54–63

    Article  Google Scholar 

  58. Liu B, Wang J, Wu J et al. (2014) Controlled fabrication of hierarchical WO3 hydrates with excellent adsorption performance. J Mater Chem A 2:1947–1954. https://doi.org/10.1039/C3TA13897F

    Article  Google Scholar 

  59. Smith W, Wolcott A, Fitzmorris RC et al. (2011) Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J Mater Chem 21:10792–10800. https://doi.org/10.1039/c1jm11629k

    Article  Google Scholar 

  60. Wahab HS, Koutselos AD (2009) Computational modeling of the adsorption and? OH initiated photochemical and photocatalytic primary oxidation of nitrobenzene. J Mol Model 15:1237–1244. https://doi.org/10.1007/s00894-009-0487-0

    Article  Google Scholar 

  61. Trubitsyn DA, Vorontsov AV (2013) Molecular and reactive adsorption of dimethyl methylphosphonate over (001) and (100) anatase clusters. Comput Theor Chem 1020:63–71. https://doi.org/10.1016/j.comptc.2013.07.031

    Article  Google Scholar 

  62. Jannat AH, Morsali A, Es Z (2015) Density functional theoretical study on the mechanism of adsorption of 2-chlorophenol from water using γ-Fe2O3 nanoparticles. Prog React Kinet Mech 40:119–127. https://doi.org/10.3184/146867815X14259937892267

    Article  Google Scholar 

  63. Lee C, Aikens CM (2013) Effects of Mn doping on (TiO2)n (n=2-5) complexes. Comput Theor Chem 1013:32–45. https://doi.org/10.1016/j.comptc.2013.03.001

    Article  Google Scholar 

  64. Gurkan YY, Kasapbasi E, Cinar Z (2013) Enhanced solar photocatalytic activity of TiO2 by selenium(IV) ion-doping: Characterization and DFT modeling of the surface. Chem Eng J 214:34–44. https://doi.org/10.1016/j.cej.2012.10.025

    Article  Google Scholar 

  65. Yang L, Taylor R, Jong De WA, Hase WL (2011) A model DMMP/TiO2 (110) intermolecular potential energy function developed from ab initio calculations. J Phys Chem C 2:12403–12413

    Article  Google Scholar 

  66. Onal I, Soyer S, Senkan S (2006) Adsorption of water and ammonia on TiO2-anatase cluster models. Surf Sci 600:2457–2469. https://doi.org/10.1016/j.susc.2006.04.004

  67. Sun C, Dong L, Yu W et al. (2011) Chemical Promotion effect of tungsten oxide on SCR of NO with NH3 for the V2O5–WO3/Ti0.5Sn0.5O2 catalyst: experiments combined with DFT calculations. J Molec Catal A 346:29–38. https://doi.org/10.1016/j.molcata.2011.06.004

    Article  Google Scholar 

  68. Bondarchuk O, Huang X, Kim J et al. (2006) Formation of monodisperse (WO3)3 clusters on TiO2(110). Angew Chem-Int Ed 45:4786–4789. https://doi.org/10.1002/anie.200600837

    Article  Google Scholar 

  69. Huang X, Zhai H-J, Waters T et al. (2006) Experimental and theoretical characterization of superoxide complexes [W2O6(O2-)] and [W3O9(O2-)]: models for the interaction of O2 with reduced W Sites on tungsten oxide surfaces. Angew Chem Int Ed Engl 45:657–660. https://doi.org/10.1002/anie.200503652

    Article  Google Scholar 

  70. Huang X, Zhai H, Waters T et al. (2006) Experimental and theoretical characterization of superoxide complexes[W2O6(O2-)] and [W3O9(O2-)]: models for the interaction of O2 with reduced W sites on tungsten oxide surfaces. Angew Chem Int Ed 45:657–660. https://doi.org/10.1002/anie.200503652

    Article  Google Scholar 

  71. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

    Article  Google Scholar 

  72. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  73. Frisch MJ, Trucks GW, Schlegel HB et al. (2003) Gaussian 03, Revision C.02

  74. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270. https://doi.org/10.1063/1.448799

    Article  Google Scholar 

  75. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model J Phys Chem A 102:1995–2001

Download references

Acknowledgements

The financial support rendered by the University of Kurdistan is gratefully acknowledged.

Supporting information

Supporting Information including the BETand BJH analysis of TiO2, WO3, and TiO2/WO3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Mohebbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, E., Mohebbi, S. & Irani, M. Selective aerobic photocatalytic oxidation of benzyl alcohol over spherical structured WO3/TiO2 nanocomposite under visible light irradiation. J Sol-Gel Sci Technol 87, 170–182 (2018). https://doi.org/10.1007/s10971-018-4720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4720-0

Keywords

Navigation