Adsorption of lead(II), cadmium(II) and dysprosium(III) from aqueous solutions using mesoporous silica modified with phosphonic acid groups

Abstract

The mesoporous silica samples with different concentrations of phosphonic acid groups on the surface were obtained by direct template synthesis. The block-copolymer Pluronic P123 was used as a template, and sodium meta-silicate with diethylphosphatoethyltriethoxysilane as precursors. According to the SAXS diffractograms, mesoporous silica samples have a p6mm hexagonal symmetry. In addition, we used sol–gel method to synthesize xerogel with the same groups for comparison. All samples possess high values of specific surface area 615–730 m2/g and sorption pore volume. FTIR and potentiometric titration methods were used to investigate the surface layer of these samples. Sorption properties of the samples with phosphonic acid groups were studied in respect to a row of metal cations, among which we focused on lead(II), cadmium(II), and dysprosium(III) cations.

Highlights

  • Mesoporous silica with Phosphonic acid groups on the surface layer prepared via template synthesis.

  • Study of low-T adsorption of nitrogen (BET), FTIR and potentiometric titration.

  • Metal ion sorption properties of the samples compared to Xerogel

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Jaganathan H, Godina B (2012) Biocompatibility assessment of Si-based nano- and micro-particles. Adv Drug Deliv Rev 64(15):1800–1819

    CAS  Article  Google Scholar 

  2. 2.

    Bharti C, Nagaich U, Kumar Pal A, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133

    CAS  Article  Google Scholar 

  3. 3.

    Buckley AM, Greenblatt M (1994) The sol-gel preparation of silica gels. J Chem Educ 71(7):599

    CAS  Article  Google Scholar 

  4. 4.

    Singh LP, Bhattacharyya SK, Ahalawat S, Kumar R, Mishra G, Sharma U, Singh G (2014) Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci 214:17–37

    CAS  Article  Google Scholar 

  5. 5.

    Hoffmann F, Cornelius M, Morell J, Froba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed. 45:3216–3251

    CAS  Article  Google Scholar 

  6. 6.

    Colilla M, Vallet-Regi M (2011) Ordered mesoporous silica materials. Elsevier: Comprehensive Biomaterails. 1st edn.: 497–514

    Google Scholar 

  7. 7.

    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    CAS  Article  Google Scholar 

  8. 8.

    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    CAS  Article  Google Scholar 

  9. 9.

    Anderson JR, Boudart M (ed) (1983) Catalysis: Science and Technology. Springer. https://doi.org/10.1007/978-3-642-93229-8

    Google Scholar 

  10. 10.

    Aliev Ab, Li Ou D, Ormsby B, Sullivan AC (2000) Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids. J Mater Chem 10:2758–2764

    CAS  Article  Google Scholar 

  11. 11.

    Dudarko O, Mel’nyk I, Zub Y, Chuiko AA, Dabrowski A (2006) Template-directed synthesis of mesoporous silicas containing phosphonic acid derivatives in the surface layer Inorg Mater 42(4):360–367

    CAS  Article  Google Scholar 

  12. 12.

    Dudarko O, Gunathilake C, Sliesarenko V, Zub YL, Jaroniec M (2014) Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surf A: Physicochem Eng Asp 459:4–10

    CAS  Article  Google Scholar 

  13. 13.

    Elbhiri Z, Chevalier Y, Chovelon JM, Jaffrezic-Renault N (2000) Grafting of phosphonate groups on the silica surface for the elaboration of ion-sensitive field-effect transistors. Talanta 52:495–507

    CAS  Article  Google Scholar 

  14. 14.

    Lebed PJ, de Souza K, Bilodeau F, Lariviere D, Kleitz F (2011) Phosphonate-functionalized large pore 3-D cubic mesoporous (KIT-6) hybrid as highly efficient actinide extracting agent. Chem Commun 47:11525–11527

    CAS  Article  Google Scholar 

  15. 15.

    Lebed PJ, Savoie JD, Florek J, Bilodeau F, Larivière D, Kleitz F (2012) Large pore mesostructured organosilica-phosphonate hybrids as highly efficient and regenerable sorbents for uranium sequestration. Chem Mater 24:4166–4176

    CAS  Article  Google Scholar 

  16. 16.

    Le Y, Yang X, Dai WL, Gao R, Fan K (2008) Unexpected mononuclear W(VI) complexes containing phosphonate ligands anchored on mesoporous silica. Catal Commun 9:1838–1841

    CAS  Article  Google Scholar 

  17. 17.

    Saldadze KM (1960) Ion-exchange high-molecular compounds. Goskhimizdat, Moscow (in Russian)

  18. 18.

    Saldadze K M (1980) Complexing ionites (complexites). Chemistry, Moscow (in Russian)

  19. 19.

    Kholin YV, Zaitsev VN, Zaitseva GN, Mernyi SA (1995) Complexation in adsorption layers of silica with grafted groups of aminophosphonic and aminodiphosphonic acids J Inorg Chem 40(2):275–283in Russian

    CAS  Google Scholar 

  20. 20.

    Ryabchikov DI, Ryabukhin VA (1966) Analytical chemistry of rare-earth elements and yttrium. Nauka, Moscow, (in Russian)

    Google Scholar 

  21. 21.

    Zaitsev VM, Savransky LI (2005) Functional characteristics of porous materials for analitic chemistry. VPN KNU T. Shevchenko, Kyiv, (in Ukr.)

    Google Scholar 

  22. 22.

    Milyutin VV, Gelis VM, Nekrasova NA, Melnyk IV, Dudarko OA, Sliesarenko VV, Zub YL (2014) Sorption of actinide ions onto mesoporous phosphorus-containing silicas. Radiochemistry 56(3):262–266

    CAS  Article  Google Scholar 

  23. 23.

    Cheraghali R, Tavakoli H, Sepehrian H (2013) Preparation, characterization and lead sorption performance of alginate-SBA-15 composite as a novel adsorbent. Sci Iran 20(3):1028–1034

    Google Scholar 

  24. 24.

    Dudarko OA, Goncharik VP, Semenii VY, Zub YL (2008) Sorption of Hg2+, Nd3+, Dy3+, and UO2 2+ Ions at polysiloxane xerogels functionalized with phosphonic acid derivatives. Prot Met 44(2):193–197

    CAS  Article  Google Scholar 

  25. 25.

    Melnyk I, Goncharyk V, Stolyarchuk N, Kozhara LI, Lunochkina AS, Alonso B, Zub YL (2012) Dy(III) sorption from water solutions by mesoporous silicas functionalized with phosphonic acid groups. J Porous Mater 19:579–585

    CAS  Article  Google Scholar 

  26. 26.

    Melnyk I, Goncharyk V, Kozhara L, Yurchenko GR, Matkovsky AK, Zub YL, Alonso B (2012) Sorption properties of porous spray-dried microspheres functionalized by phosphonic acid groups. Microporous Mesoporous Mater 153:171–177

    CAS  Article  Google Scholar 

  27. 27.

    Budnyak T, Strizhak A, Gładysz-Płaska A, Sternik D, Komarov IV, Kołodynska D, Majdan M, Tertykh VA (2016) Silica with immobilized phosphonic acid-derivative for uranium extraction. J Hazard Mater 314:326–340

    CAS  Article  Google Scholar 

  28. 28.

    Dudarko OA, Gunathilake C, Wickramaratne NP, Sliesarenko VV, Zub YL, Gorka J, Dai S, Jaroniec M (2015) Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. Colloids Surf A: Physicochem Eng Asp 482:4–10

    Article  Google Scholar 

  29. 29.

    Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836

    CAS  Article  Google Scholar 

  30. 30.

    Pu H, Pan H, Qin Y, Wan D, Yuan J (2010) Phosphonic acid-functionalized hollow silica spheres by nitroxide mediated polymerization. Mater Lett 64:1510–1512

    CAS  Article  Google Scholar 

  31. 31.

    Martinez-Carmona M, Colilla M, Ruiz-Gonzalez ML, Gonzalez-Calbet JM, Vallet-Regi M (2016) High resolution transmission electron microscopy: A key tool to understand drug release from mesoporous matrices. Microporous Mesoporous Mater 225:399–410

    CAS  Article  Google Scholar 

  32. 32.

    Dudarko OA, Mel’nik IV, Zub YL (2005) Synthesis of polysiloxane xerogels using tetraethoxysilane/(diethylphosphatoethyl)triethoxysilane system. Colloid J 67(6):683–687

    CAS  Article  Google Scholar 

  33. 33.

    Dabrowski A, Barczak M, Dudarko OA, Zub YL (2007) Preparation and characterization of polysiloxane xerogels having covalently attached phosphonic groups. Pol J Chem 81(4):475–483

    CAS  Google Scholar 

  34. 34.

    Melnyk IV, Fatnassi M, Cacciaguerra T, Zub YL, Alonso B (2012) Spray-dried porous silica microspheres functionalised by phosphonic acid groups. Microporous Mesoporous Mater 152:172–177

    CAS  Article  Google Scholar 

  35. 35.

    Sing KSW, Everett DH, Haul RAW (1985) Reporting physisorption data for gas/solid system with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    CAS  Article  Google Scholar 

  36. 36.

    Brunauer S, Emmet PH, Teller E (1938) Adsorption of Gases in Multimolecular Layers. J Am Chem Soc 60:309–319

    CAS  Article  Google Scholar 

  37. 37.

    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    CAS  Article  Google Scholar 

  38. 38.

    Albert A, Serjeant EP (1962) Ionization constants of acids & bases. John Wiley & Sons, New York

    Google Scholar 

  39. 39.

    Schwarzenbach G, Flaschka G (1970) Complexation titration. Chemistry, Moscow (in Russian)

  40. 40.

    Schneider P, Hudec P, Solcova O (2008) Pore-volume and surface area in microporous–mesoporous solids. Microporous Mesoporous Mater 115:491–496

    CAS  Article  Google Scholar 

  41. 41.

    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Pess, UK

    Google Scholar 

  42. 42.

    The 1998 Aarhus Protocol on Heavy Metals. United Nations Economic Commission for Europe. http://www.unece.org/env/lrtap/hm_h1.html

  43. 43.

    Draper NR, Smith H (1998) Applied Regression Analysis. Wiley-Interscience, New York

    Google Scholar 

Download references

Acknowledgements

This research is sponsored by NATO’s Public Diplomacy Division in the framework of «Science for Peace» NATO Project SPS.NUKR.SFP 984398.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valeriia V. Sliesarenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fetisova, Y.S., Dudarko, O.A., Bauman, M. et al. Adsorption of lead(II), cadmium(II) and dysprosium(III) from aqueous solutions using mesoporous silica modified with phosphonic acid groups. J Sol-Gel Sci Technol 88, 66–76 (2018). https://doi.org/10.1007/s10971-018-4692-0

Download citation

Keywords

  • Adsorption
  • Mesoporous silica
  • Organosilica
  • Phosphonic acid groups
  • SBA-15
  • Template synthesis