Skip to main content
Log in

New precursors for the preparation of pH-sensitive, targeting, and loaded non-porous bridged silsesquioxane nanoparticles

  • BRIEF COMMUNICATION: SOL-GEL AND HYBRID MATERIALS FOR BIOLOGICAL AND HEALTH (MEDICAL) APPLICATIONS
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two new tetrasilylated precursors based on a triazine derivative with molecular recognition properties have been synthesized and are shown to efficiently produce pH-sensitive, targeting, and (one-step) loaded non-porous bridged silsesquioxane nanoparticles (nano-BS). This was achieved by the sol−gel hydrolysis−condensation of the precursors in the presence of cyanuric acid (CA) H-bonded through the three complementary faces and mimicking 5-fluorouracil (5-FU) anticancer drug. The complex in the nano-BS is not affected under neutral medium and operates under acidic conditions to deliver the loaded molecule, as demonstrated by FTIR spectroscopic studies. Furthermore, thanks to the presence of the amino function, the nano-BS could be functionalized with targeting or fluorescent systems. Indeed, the grafting of fluorescein isothiocyanate revealed the internalization into cancer cells, confirming that nano-BS are promising materials as carriers to avoid the side effects of anticancer drug due to a controlled and targeted drug delivery.

SEM and confocal images of nano-BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Shea KJ, Loy DA, Webster OW (1989) Aryl-bridged polysilsesquioxanes—new microporous materials. Chem Mater 1(6):572–574. https://doi.org/10.1021/cm00006a003

    Article  Google Scholar 

  2. Corriu RJP, Moreau JJE, Thepot P, Wong Chi Man M (1992) New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis(trimethoxysilyl)organometallic precursors. Chem Mater 4(6):1217–1224. https://doi.org/10.1021/cm00024a020

    Article  Google Scholar 

  3. Sanchez C, Ribot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18(10):1007–1047

    Google Scholar 

  4. Shea KJ, Moreau JJE, Loy DA, Corriu RJP, Boury B (2004) In: Gómez-Romero P and Sanchez C (eds) Functional hybrid materials. Wiley-VCH, Weinheim

  5. Elias X, Pleixats R, Wong Chi Man M, Moreau JJE (2006) Hybrid‐bridged silsesquioxane as recyclable metathesis catalyst derived from a bis‐silylated hoveyda‐type ligand. Adv Synth Catal 348(6):751–762

    Article  Google Scholar 

  6. Monge-Marcet A, Pleixats R, Cattoën X, Wong Chi Man M (2013) Catalytic applications of recyclable silica immobilized NHC–ruthenium complexes. Tetrahedron 69(1):341–348. https://doi.org/10.1016/j.tet.2012.10.023

    Article  Google Scholar 

  7. Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Recyclable organocatalysts based on hybrid silicas. Green Chem 18(4):881–922

    Article  Google Scholar 

  8. Ferré M, Cattoën X, Wong Chi Man M, Pleixats R (2016) Sol–gel immobilized n‐heterocyclic carbene gold complex as a recyclable catalyst for the rearrangement of allylic esters and the cycloisomerization of γ‐alkynoic acids. ChemCatChem 8(17):2824–2831

    Article  Google Scholar 

  9. Graffion J, Cattoën X, Freitas VT, Ferreira RA, Wong Chi Man M, Carlos LD (2012) Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. J Mater Chem 22(14):6711–6715

    Article  Google Scholar 

  10. Freitas VT, Fu L, Cojocariu AM, Cattoën X, Bartlett JR, Le Parc R, Bantignies J-L, Wong Chi Man M, Andre PS, Ferreira RA (2015) Eu3+-based bridged silsesquioxanes for transparent luminescent solar concentrators. ACS Appl Mater Interfaces 7(16):8770–8778

    Article  Google Scholar 

  11. Bourg S, Broudic J-C, Conocar O, Moreau JJE, Meyer D, Wong Chi Man M (2001) Tailoring of organically modified silicas for the solid− liquid extraction of actinides. Chem Mater 13(2):491–499

    Article  Google Scholar 

  12. Meyer DJ, Bourg S, Conocar O, Broudic J-C, Moreau JJE, Wong Chi Man M (2007) Extraction of plutonium and americium using silica hybrid materials. Comptes Rendus Chim 10(10):1001–1009

    Article  Google Scholar 

  13. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol−gel process for protein encapsulation. Chem Mater 12(8):2434–2441

    Article  Google Scholar 

  14. Barbe C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug‐delivery system. Adv Mater 16(21):1959–1966

    Article  Google Scholar 

  15. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16(11):1013–1030

    Article  Google Scholar 

  16. Chevalier P, Corriu RJP, Delord P, Moreau JJE, Wong Chi Man M (1998) Design of porous silica from hybrid organic–inorganic precursors. New J Chem 22(5):423–433

    Article  Google Scholar 

  17. Boury B, Chevalier P, Corriu RJP, Delord P, Moreau JJE, Wong Chi Man M (1999) Hybrid organic−inorganic xerogel access to meso-and microporous silica by thermal and chemical treatment. Chem Mater 11(2):281–291

    Article  Google Scholar 

  18. Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402(6764):867–871. http://www.nature.com/nature/journal/v402/n6764/suppinfo/402867a0_S1.html

    Article  Google Scholar 

  19. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. J Am Chem Soc 121(41):9611–9614. https://doi.org/10.1021/ja9916658

    Article  Google Scholar 

  20. Urata C, Yamada H, Wakabayashi R, Aoyama Y, Hirosawa S, Arai S, Takeoka S, Yamauchi Y, Kuroda K (2011) Aqueous colloidal mesoporous nanoparticles with ethenylene-bridged silsesquioxane frameworks. J Am Chem Soc 133(21):8102–8105

    Article  Google Scholar 

  21. Li X, Zhou L, Wei Y, El-Toni AM, Zhang F, Zhao D (2014) Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc 136(42):15086–15092

    Article  Google Scholar 

  22. Croissant JG, Cattoën X, Wong Chi Man M, Durand J-O, Khashab NM (2015) Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale 7(48):20318–20334

    Article  Google Scholar 

  23. Croissant J, Cattoën X, Wong Chi Man M, Dieudonné P, Charnay C, Raehm L, Durand JO (2015) One‐pot construction of multipodal hybrid periodic mesoporous organosilica nanoparticles with crystal‐like architectures. Adv Mater 27(1):145–149

    Article  Google Scholar 

  24. Chen Y, Shi J (2016) Chemistry of mesoporous organosilica in nanotechnology: molecularly organic–inorganic hybridization into frameworks. Adv Mater 28(17):3235–3272

    Article  Google Scholar 

  25. Giret S, Wong Chi Man M, Carcel C (2015) Mesoporous-silica-functionalized nanoparticles for drug delivery. Chemistry 21(40):13850–13865. https://doi.org/10.1002/chem.201500578

    Article  Google Scholar 

  26. Lin CXC, Qiao SZ, Yu CZ, Ismadji S, Lu GQM (2009) Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous Mesoporous Mater 117(1):213–219

    Article  Google Scholar 

  27. Vathyam R, Wondimu E, Das S, Zhang C, Hayes S, Tao Z, Asefa T (2011) Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods. J Phys Chem C 115(27):13135–13150

    Article  Google Scholar 

  28. Moorthy MS, Park S-S, Fuping D, Hong S-H, Selvaraj M, Ha C-S (2012) Step-up synthesis of amidoxime-functionalised periodic mesoporous organosilicas with an amphoteric ligand in the framework for drug delivery. J Mater Chem 22(18):9100–9108

    Article  Google Scholar 

  29. Yang Y, Bernardi S, Song H, Zhang J, Yu M, Reid JC, Strounina E, Searles DJ, Yu C (2016) Anion assisted synthesis of large pore hollow dendritic mesoporous organosilica nanoparticles: understanding the composition gradient. Chem Mater 28(3):704–707

    Article  Google Scholar 

  30. Yang Y, Lu Y, Abbaraju PL, Zhang J, Zhang M, Xiang G, Yu C (2017) Multi‐shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angew Chem 129:8566–8570

    Article  Google Scholar 

  31. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91(Supplement C):90–127. https://doi.org/10.1016/j.biomaterials.2016.03.019

    Article  Google Scholar 

  32. Mizoshita N, Tani T, Shinokubo H, Inagaki S (2012) Mesoporous organosilica hybrids consisting of silica-wrapped π–π stacking columns. Angew Chem Int Ed 51(5):1156–1160. https://doi.org/10.1002/anie.201105394

    Article  Google Scholar 

  33. Giret S, Théron C, Gallud A, Maynadier M, Gary-Bobo M, Garcia M, Wong Chi Man M, Carcel C (2013) A designed 5-fluorouracil-based bridged silsesquioxane as an autonomous acid-triggered drug-delivery system. Chemistry 19(38):12806–12814. https://doi.org/10.1002/chem.201301081

    Article  Google Scholar 

  34. Fertier L, Théron C, Carcel C, Trens P, Wong Chi Man M (2011) pH-Responsive bridged silsesquioxane. Chem Mater 23(8):2100–2106. https://doi.org/10.1021/cm103327y

    Article  Google Scholar 

  35. Croissant J, Maynadier M, Mongin O, Hugues V, Blanchard‐Desce M, Chaix A, Cattoën X, Wong Chi Man M, Gallud A, Gary‐Bobo M, Garcia M, Raehm L, Durand J (2015) Enhanced two‐photon fluorescence imaging and therapy of cancer cells via gold@ bridged silsesquioxane nanoparticles. Small 11(3):295–299

    Article  Google Scholar 

  36. Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8(13):7240–7247

    Article  Google Scholar 

  37. Mauriello-Jimenez C, Henry M, Aggad D, Raehm L, Cattoën X, Wong Chi Man M, Charnay C, Alpugan S, Ahsen V, Tarakci DK, Maillard P, Maynadier M, Garcia M, Dumoulin F, Gary-Bobo M, Coll J, Josserand V, Durand J (2017) Porphyrin-or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. Nanoscale 9(43):16622–16626

    Article  Google Scholar 

  38. Croissant JG, Mauriello-Jimenez C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M (2015) Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells. Chem Commun 51(61):12324–12327

    Article  Google Scholar 

  39. Mauriello-Jimenez C, Croissant J, Maynadier M, Cattoën X, Wong Chi Man M, Vergnaud J, Chaleix V, Sol V, Garcia M, Gary-Bobo M, Raehm L, Durand J (2015) Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. J Mater Chem B 3(18):3681–3684

    Article  Google Scholar 

  40. Gao Y, Chen L, Zhang Z, Gu W, Li Y (2010) Linear cationic click polymer for gene delivery: synthesis, biocompatibility, and in vitro transfection. Biomacromolecules 11(11):3102–3111. https://doi.org/10.1021/bm100906m

    Article  Google Scholar 

  41. Bürglová K, Noureddine A, Hodačová J, Toquer G, Cattoën X, Wong Chi Man M (2014) A general method for preparing bridged organosilanes with pendant functional groups and functional mesoporous organosilicas. Chem Eur J 20(33):10371–10382

    Article  Google Scholar 

  42. Noureddine A, Trens P, Toquer G, Cattoën X, Wong Chi Man M (2014) Tailoring the hydrophilic/lipophilic balance of clickable mesoporous organosilicas by the copper-catalyzed azide–alkyne cycloaddition click-functionalization. Langmuir 30(41):12297–12305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carcel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • New tetrasilylated precursors with molecular recognition properties were synthesized.

  • pH-sensitive and loaded non-porous bridged silsesquioxane nanoparticles (nano-BS) were prepared.

  • Nano-BS were internalized into cancer cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Théron, C., Birault, A., Bernhardt, M. et al. New precursors for the preparation of pH-sensitive, targeting, and loaded non-porous bridged silsesquioxane nanoparticles. J Sol-Gel Sci Technol 89, 45–55 (2019). https://doi.org/10.1007/s10971-018-4676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4676-0

Keywords

Navigation