Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

  • Abdullah Abdul Samat
  • Abdul Azim Jais
  • Mahendra Rao Somalu
  • Nafisah Osman
  • Andanastuti Muchtar
  • Kean Long Lim
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 12 Downloads

Abstract

The electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC.

Keywords:

Solid oxide fuel cell LSC cathode Activated carbon Sol-gel Electrical properties 

Notes

Acknowledgements

The authors would like acknowledge the Research University grant (DIP-2016-005) provided by Universiti Kebangsaan Malaysia. Also, the authors would like to thank the Ministry of Higher Education (MOHE) of Malaysia for financial support provided via the Transdisciplinary Research Grant Scheme (600-IRMI/TRGS 5/3 (1/2016)-2) and the Fundamental Research Grant Scheme (FRGS/2/2014/ST05/UKM/03/1). Abdullah Abdul Samat thankfully acknowledges the MOHE and Universiti Malaysia Perlis (UniMAP) for the SLAB/SLAI PhD scholarship. Facilities support from the Centre for Research and Instrumentation Management (CRIM) of Universiti Kebangsaan Malaysia, Universiti Tun Hussein Onn Malaysia (UTHM), and Universiti Teknologi MARA is also appreciatively acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Garbayo I, Esposito V, Sanna S, Morata A, Pla D, Fonseca L, Sabate N, Tarancon A (2014) J Power Sources 248:1042–1049CrossRefGoogle Scholar
  2. 2.
    Heel A, Holtappels P, Graule T (2010) J Power Sources 195:6709–6718CrossRefGoogle Scholar
  3. 3.
    Hayd J, Dieterle L, Guntow U, Gerthsen D, Ivers-Tiffée E (2011) J Power Sources 196:7263–7270CrossRefGoogle Scholar
  4. 4.
    Samson AJ, Søgaard M, Bonanos N (2012) Electrochem Solid-State Lett 15:B54–B56CrossRefGoogle Scholar
  5. 5.
    Ricote S, Bonanos N, Rørvik PM, Haavik C (2012) J Power Sources 209:172–179CrossRefGoogle Scholar
  6. 6.
    Promsuy S, Tangtrakarn A, Mongkolkachit C, Wanakitti S, Amornkitbamrung V (2016) J Sol-Gel Sci Technol 78:187–194CrossRefGoogle Scholar
  7. 7.
    Ismail I, Osman N, Md Jani AM (2016) J Sol-Gel Sci Technol 80:259–266CrossRefGoogle Scholar
  8. 8.
    Ghouse M, Al-Yousef Y, Al-Musa A, Al-Otaibi MF (2010) Int J Hydrog Energy 35:9411–9419CrossRefGoogle Scholar
  9. 9.
    Abdul Samat A, Somalu MR, Muchtar A, Osman N (2016) Malays J Anal Sci 20:1458–1466CrossRefGoogle Scholar
  10. 10.
    Abdul Samat A, Somalu MR, Muchtar A, Osman N (2016) Solid State Sci Technol 24:135–142Google Scholar
  11. 11.
    Kim JH,Park YM,Kim H,(2011) J Power Sources 196:3544–3547CrossRefGoogle Scholar
  12. 12.
    Abdul Samat A, Somalu MR, Muchtar A, Hassan OH, Osman N (2016) J Sol-Gel Sci Technol 78:382–393CrossRefGoogle Scholar
  13. 13.
    Naceur H, Megriche A, El Maaoui M (2014) J Adv Ceram 3:17–30CrossRefGoogle Scholar
  14. 14.
    Tao Y, Shao J, Wang J, Wang WG (2008) J Power Sources 185:609–614CrossRefGoogle Scholar
  15. 15.
    Baharuddin NA, Muchtar A, Somalu MR, Seyednezhad M (2017) Powder Technol 313:382–388CrossRefGoogle Scholar
  16. 16.
    Bansal NP, Zhong Z (2006) J Power Sources 158:148–153CrossRefGoogle Scholar
  17. 17.
    Wu YC, Huang PY, Xu G (2017) Ceram Int 43:2460–2470CrossRefGoogle Scholar
  18. 18.
    Nicole ML, Closset NP, van Doorn RHE, Kruidhof H, Boeijsma J (1996) Powder Diffr 11:31–34CrossRefGoogle Scholar
  19. 19.
    Anwar M, Muhammed Ali SA, Abdalla AM, Somalu MR, Muchtar A (2017) Process Appl Ceram 11:67–74CrossRefGoogle Scholar
  20. 20.
    Li S, Ma P, Zhu X, Jiang N, Ivanov M, Li C, Xie T, Kuo H, Shi Y, Chen H, Pan Y, Hreniak D, Li J (2017) Ceram Int 43:10013–10019CrossRefGoogle Scholar
  21. 21.
    Muhammed Ali SA, Anwar M, Baharuddin NA, Somalu MR, Muchtar A (2018) J Solid State Electrochem 22:263–273CrossRefGoogle Scholar
  22. 22.
    Zhang L, Long W, Jin F, He T (2013) Int J Hydrog Energy 38:7947–7956CrossRefGoogle Scholar
  23. 23.
    Bai Y, Liu M, Ding D, Blinn K, Qin W, Liu J, Liu M (2012) J Power Sources 205:80–85CrossRefGoogle Scholar
  24. 24.
    Søgaard M, Hendriksen PV, Mogensen M, Poulsen FW, Skou E (2006) Solid State Ion 177:3285–3296CrossRefGoogle Scholar
  25. 25.
    Gwon O, Yoo S, Shin J, Kim G (2014) Int J Hydrog Energy 39:20806–20811CrossRefGoogle Scholar
  26. 26.
    Egger A, Bucher E, Yang M, Sitte W (2012) Solid State Ion 225:55–60CrossRefGoogle Scholar
  27. 27.
    Petrov AN, Kononchuk OF, Andreev AV, Cherepanov VA, Kofstad P (1995) Solid State Ion 80:189–199CrossRefGoogle Scholar
  28. 28.
    Ritcher J, Holtappels P, Graule T, Nakamura T, Gauckler LJ (2009) Mon Chem 140:985–999CrossRefGoogle Scholar
  29. 29.
    Paydar S, Shariat MH, Javadpour S (2016) Int J Hydrog Energy 41:23145–23155CrossRefGoogle Scholar
  30. 30.
    Eslem Kisa A, Demircan O (2017) J Sol-Gel Sci Technol 82:352–362CrossRefGoogle Scholar
  31. 31.
    El Khal H, Cordier A, Batis N, Siebert E, Georges S, Steil MC (2017) Solid State Ion 304:75–84CrossRefGoogle Scholar
  32. 32.
    Montes JM, Cuevas FG, Cintas J (2008) Appl Phys A 92:375–380CrossRefGoogle Scholar
  33. 33.
    Seyednezhad M, Rajabi A, Muchtar A, Somalu MR, Ooshaksaraei P (2017) J Asian Ceram Soc 5:77–81CrossRefGoogle Scholar
  34. 34.
    Zhang X, Gao H, Zhang Z, Wen R, Wang G, Mu J, Che H, Zhang X (2017) Ceram Int 43:6345–6352CrossRefGoogle Scholar
  35. 35.
    Osman N, Talib IA, Hamid HA (2009) Sains Malays 38:103–107Google Scholar
  36. 36.
    Ding X, Gao X, Zhu W, Wang J, Jiang J (2014) Int J Hydrog Energy 39:12092–12100CrossRefGoogle Scholar
  37. 37.
    Xiao J, Yuan H, Chen L, Xiong C, Liu W (2015) Ionics 21:1193–1199CrossRefGoogle Scholar
  38. 38.
    Jun A, Yoo S, Gwon O, Shin J, Kim G (2013) Electrochim Acta 89:372–376CrossRefGoogle Scholar
  39. 39.
    Peng B, Chen G, Wang T, Zhou J, Guo J, Cheng Y, Wu K (2012) J Power Sources 201:174–178CrossRefGoogle Scholar
  40. 40.
    Wang MS, Wang JX, He CR, Xue YJ, Miao H, Wang Q, Wang WG (2015) Ceram Int 41:5017–5025CrossRefGoogle Scholar
  41. 41.
    Hu Y, Bouffanais Y, Almar L, Morata A, Tarancon A, Dezanneau G (2013) Int J Hydrog Energy 38:3064–3072CrossRefGoogle Scholar
  42. 42.
    Muhammed Ali SA, Anwar M, Somalu MR, Muchtar A (2017) Ceram Int 43:4647–4654CrossRefGoogle Scholar
  43. 43.
    Zeng R, Huang Y (2017) Int J Hydrog Energy 42:7220–7225CrossRefGoogle Scholar
  44. 44.
    Zhao F, Peng R, Xia C (2008) Fuel Cells Bull 2008:12–16CrossRefGoogle Scholar
  45. 45.
    Benel C, Darbandi AJ, Djenadic R, Evans A, Tolke R, Prestat M, Hahn H (2013) J Power Sources 229:258–264CrossRefGoogle Scholar
  46. 46.
    Karageorgakis NI, Heel A, Bieberle-Hütter A, Rupp JLM, Graule T, Gauckler LJ (2010) J Power Sources 195:8152–8161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fuel Cell InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of Applied SciencesUniversiti Teknologi MARAArauMalaysia
  3. 3.Centre for Materials Engineering and Smart Manufacturing (MERCU), Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations