Skip to main content
Log in

Preparation of morphology-controlled fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/magnesium oxide nanocomposite particles: development of magnesium oxide nanocomposite particles possessing a water-resistance ability

  • Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica nanocomposites-encapsulated magnesium oxide particles [RF–(CH2–CHSiO3)n–RF/MgO nanocomposites; n = 2, 3; RF = CF3CFOC3F7] were prepared by the sol–gel reactions of the corresponding oligomer [RF–(CH2CHSi(OMe)3)n–RF] in the presence of magnesium oxide nanoparticles under alkaline or non-catalytic conditions, respectively. These sol–gel reactions were found to afford the two kinds of morphology-controlled fluorinated nanocomposite particles; that is, the alkaline conditions can supply the spherical fine nanoparticles, and the non-catalytic conditions can afford the linearly arrayed fluorinated oligomeric nanocomposite particles. Interestingly, the linearly arrayed nanocomposites provide a poor water-resistance ability toward their encapsulated magnesium oxide, leading the magnesium hydroxide through the hydrolysis process; however, it was demonstrated that the spherical fine nanoparticles can give a perfect water-resistance ability toward the magnesium oxide in their particle cores under similar conditions. In addition, the spherical fluorinated nanocomposite particles-encapsulated magnesium oxide were applied to the surface modification of PMMA [poly(methyl methacrylate)] film to exhibit the oleophobic characteristic imparted by fluoroalkyl segments in the composites on the modified surface. Magnesium oxide in the nanocomposites can also have a similar surface orientational ability to that of the fluoroalkyl segments in the composites. In contrast, the corresponding linearly arrayed fluorinated nanocomposite particles can give the uniformly dispersibility toward the PMMA film to supply the oleophobic property imparted by longer fluoroalkyl segments in the composites on the surface and even on the reverse side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3
Scheme 4
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smith DW Jr., lacono ST, lyer SS (eds) (2014) Handbook of fluoropolymer science and technology. Wiley, Hoboken, NJ

  2. Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 1, “synthesis, properties, processing and simulation”. RSC, Cambridge

    Google Scholar 

  3. Ameduri B, Sawada H (eds) (2016) Fluorinated polymers: volume 2, “applications”. RSC, Cambridge

    Google Scholar 

  4. Sawada H (1996) Chem Rev 96:1779–1808

    Article  Google Scholar 

  5. Sawada H (2007) Prog Polym Sci 32:509–533

    Article  Google Scholar 

  6. Sawada H (2012) Polym Chem 3:46–65

    Article  Google Scholar 

  7. Sawada H, Ikeno K, Kawase T (2002) Macromolecules 35:4306–4313

    Article  Google Scholar 

  8. Mugisawa M, Kasai R, Sawada H (2009) Langmuir 25:415–421

    Article  Google Scholar 

  9. Sawada H, Takahashi K (2010) J Colloid Interface Sci 351:166–170

    Article  Google Scholar 

  10. Mugisawa M, Ohnishi K, Sawada H (2007) Langmuir 23:5848–5851

    Article  Google Scholar 

  11. Mugisawa M, Sawada H (2008) Langmuir 24:9215–9218

    Article  Google Scholar 

  12. Kakkar R, Kappor PN, Klabunde KJ (2004) J Phys Chem B 108:18140–18148

    Article  Google Scholar 

  13. Jeevanadam R, Klabunde KJ (2002) Langmuir 18:5309–5313

    Article  Google Scholar 

  14. Bedrov D, Smith GD, Chun B-W (2010) Eur Polym J 46:2129–2137

    Article  Google Scholar 

  15. Hickey DJ, Ercan B, Sun L, Webster TJ (2015) Acta Biomater 14:175–184

    Article  Google Scholar 

  16. Mbarki R, Madhi I, M’nif A, Hamzaoui AH (2015) Mater Sci Semi Proc 39:119–131

    Article  Google Scholar 

  17. Ma Z-L, Fan C-R, Lu G-Y, Liu X-Y, Zhang H (2012) J Appl Polym Sci 125:3567–3574

    Article  Google Scholar 

  18. Zhang J, Du Z, Zou W, Li H, Zhang C (2017) Compos Sci Technol 148:1–8

    Article  Google Scholar 

  19. Murray LR, Gupta C, Washburn NR, Erk KA (2015) J Colloid Interface Sci 459:107–114

    Article  Google Scholar 

  20. Viretto A, Sonnier R, Taguet A, Otazaghine B, Ferry L, L.-Cuesta J-M, Lagreve C (2016) Fire Mater 40:445–463

    Article  Google Scholar 

  21. Mbarki R, Mnif A, Hamzaoui AH (2015) Mater Sci Semi Proc 29:300–306

    Article  Google Scholar 

  22. Bhargava A, Alarco JA, Mackinnon IDR, Page D, Ilyushechkin A (1998) Mater Lett 34:133–142

    Article  Google Scholar 

  23. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) World J Microbiol Biotechnol 16:187–194

    Article  Google Scholar 

  24. Heidarizad M, Sengor SS (2016) J Mol Liq 224:607–617

    Article  Google Scholar 

  25. Zheng L, Yu Z, Yuan K, Jin X, Feng C, Lin X, Wang X, Zhu L, Zhang G, Xu D (2017) Ceram Int 43:2004–2011

    Article  Google Scholar 

  26. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Plant Pathol 65:551–560

    Article  Google Scholar 

  27. Pandey GP, Agrawal RC, Hashmi SA (2009) J Power Sources 190:563–572

    Article  Google Scholar 

  28. Manikandan S, Rajan KS (2015) Energy 88:408–416

    Article  Google Scholar 

  29. Itatani K, Tsujimoto T, Kishimoto A (2006) J Eur Ceram Soc 26:639–645

    Article  Google Scholar 

  30. Bondoux C, Prene P, Belleville P, Guillet F, Lambert S, Minot B, Jerisian R (2004) Mater Sci Semi Proc 7:249–252

    Article  Google Scholar 

  31. Bondoux C, Prene P, Belleville P, Gullet F, Lambert S, Minot B, Jerisian RT (2005) J Eur Ceram Soc 25:2795–2798

    Article  Google Scholar 

  32. Machrafi H, Lebon G, Iorio CS (2016) Compos Sci Technol 130:78–87

    Article  Google Scholar 

  33. Karasuda T, Aika K (1997) J Catal 171:439–448

    Article  Google Scholar 

  34. Choudary BM, Mulukutia RS, Klabunde KJ (2003) J Am Chem Soc 125:2020–2021

    Article  Google Scholar 

  35. Heidberg B, Bredow T, Littmann K, Jug K (2005) Mater Sci -Pol 23:501–508

    Google Scholar 

  36. Orlov AA, Chernykh TN (2016) Procedia Eng 150:1623–1626

    Article  Google Scholar 

  37. Choi H, Woo NC, Jang M, Cannon FS, Snyder AA (2014) Sep Purif Technol 126:184–189

    Article  Google Scholar 

  38. Amaral LF, Oliveira IR, Salomao R, Frollini E, Pandolfelli VC (2010) Ceram Int 36:1047–1054

    Article  Google Scholar 

  39. Matabola KP, van der Merwe EM, Strydom CA, Labuschagne FJW (2010) J Chem Technol Biotechnol 85:1569–1574

    Article  Google Scholar 

  40. del V.-Zermeno R, Chimenos JM, Formosa J, Fernandez AI (2012) J Chem Technol Biotechnol 87:1702–1708

    Article  Google Scholar 

  41. Sawada H, Suzuki T, Takashima H, Takishita K (2008) Colloid Polym Sci 286:1569

    Article  Google Scholar 

  42. Sawada H and Nakayama M (1991) J Chem Soc Chem Commun 677–678

  43. Sawada H, Ikematsu Y, Kawase T, Hayakawa Y (1996) Langmuir 12:3529–3530

    Article  Google Scholar 

  44. Saito T, Tsushima Y, Sawada H (2015) Colloid Polym Sci 293:65–73

    Article  Google Scholar 

  45. Sawada H, Yanagida K, Inaba Y, Sugiya M, Kawase T, Tomita T (2001) Eur Polym J 37:1433–1439

    Article  Google Scholar 

  46. Chen Y-C, Tsai C-C, Lee YD (2004) J Polym Sci A Polym Chem 42:1789–1807

    Article  Google Scholar 

  47. Durand N, Mariot D, Ameduri B, Boutevin B, Ganachaud F (2011) Langmuir 27:4057–4067

    Article  Google Scholar 

  48. Miyazima T, Nakamura Y, Min KH (2016) Res Rep 66:32–36

    Google Scholar 

Download references

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research 16K05891 from the Ministry of Education, Science, Sports, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Sawada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • Fluoroalkyl end-capped oligomeric silca/magnesium oxide nanocomposites were prepared.

  • Morphology-control of the obtained nanocomposite particles was studied.

  • Magnesium oxide in the nanocomposites was found to possess a higher water-resistance ability.

  • The obtained nanocomposites were applied to the surface modification of PMMA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oikawa, Y., Goto, Y., Nishida, M. et al. Preparation of morphology-controlled fluoroalkyl end-capped vinyltrimethoxysilane oligomeric silica/magnesium oxide nanocomposite particles: development of magnesium oxide nanocomposite particles possessing a water-resistance ability. J Sol-Gel Sci Technol 89, 135–147 (2019). https://doi.org/10.1007/s10971-018-4655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4655-5

Keywords

Navigation