Processing and properties of sintered submicron IR transparent alumina derived through sol–gel method

  • R. Senthil Kumar
  • Asit Kumar Khanra
  • Roy Johnson
Original Paper: Industrial and technological applications of sol-gel and hybrid materials
  • 30 Downloads

Abstract

For the first time, sintered alumina with high transparency in mid infrared region, composed of submicron grains, has been fabricated using sol–gel processing. Commercially available boehmite powder was used to prepare the stable sol. The sol was mixed with appropriate amount of sintering aids and alumina seeds. The sol was further gelled, dried, and heat treated at 1000 °C for producing alumina powder. The powder was further shaped into pellets by compaction and sintered at temperatures between 1200 and 1400 °C in air. Sintered samples were further pressed hot isostatically to produce sintered submicron transparent alumina. The synthesized powder was characterized for its morphology and phase. The sintered and hot isostatically pressed samples were characterized for their physical, mechanical, and optical properties. The present method produced transparent alumina with transparency upto 87% in mid-wave infrared region. These transparency values were at par with the transparency of single crystal sapphire in the mid-wave infrared region and the hardness values were even superior than sapphire.

Keywords

Sol–gel process Transparent alumina Submicron IR transparent 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Krell A, Blank P, Ma H, Hutzler T (2003) J Am Ceram Soc 86:12–18CrossRefGoogle Scholar
  2. 2.
    Johnson R, Biswas P, Ramavath P, Kumar RS, Padmanabham G (2012) Trans Ind Ceram Soc 71:73–85CrossRefGoogle Scholar
  3. 3.
    Tropf WJ, Thomas ME, Frazer RK (2003) SPIE window and dome technologies and materials conference VIII, Vol. 5078, 22–23 April, 2003, Orlando, FL, USAGoogle Scholar
  4. 4.
    Krell A, Hutzler T, Klimke J (2006) NATO-OTAN—nano materials technology for military vehicle applications 14-1–14-10. http://www.dtic.mil/get-tr-doc/pdf?AD=ADA469603
  5. 5.
    Peelen JGJ (1979) Ceram Inter 5:70–75CrossRefGoogle Scholar
  6. 6.
    Peelen (1979) Ceram Inter 5:115–119CrossRefGoogle Scholar
  7. 7.
    Peelen JGJ, Metselaar R (1974) J Appl Phys 45:216–220CrossRefGoogle Scholar
  8. 8.
    Apetz R, Van Bruggen MPB (2003) J Am Ceram Soc 86:480–486CrossRefGoogle Scholar
  9. 9.
    Krell A, Baur G, Dahne C (2003) Transparent sintered sub-µm Al2O3 with IR transmissivity equal to sapphire. In: Tustison RW (ed) Window and dome technologies. Proceedings of SPIE conference VIII, Vol. 5078, 22–23 April, Orlando, FL, USAGoogle Scholar
  10. 10.
    Coble RL (1962) US Pat No 3026210, 20 MarGoogle Scholar
  11. 11.
    Muta A, Toda G, Noro T, Yamazaki C (1973) US Pat No 3711585, 16 JanGoogle Scholar
  12. 12.
    Mizuta H, Oda K, Shibasaki Y, Maeda M, Machida M, Ohshima K (1992) J Am CeramSoc 75:469–473CrossRefGoogle Scholar
  13. 13.
    Kwon OH, Nordahl CS, Messing GL (1995) J Am Ceram Soc 78:491–494CrossRefGoogle Scholar
  14. 14.
    Kumagai M, Messing GL (1984) J Am Ceram Soc C 67:230–231Google Scholar
  15. 15.
    Kumagai M, Messing GL (1985) J Am Ceram Soc 68:500–505CrossRefGoogle Scholar
  16. 16.
    Godlinski D, Kuntz M, Grathwohl G (2002) J Am Ceram Soc 85:2449–2456CrossRefGoogle Scholar
  17. 17.
    Cheng J, Agarwal D, Zhang Y, Roy R (2002) Mater Lett 56:587–592CrossRefGoogle Scholar
  18. 18.
    Kim BN, Higara K, Morita K, Yoshida H (2007) Scr Mater 57:607–610CrossRefGoogle Scholar
  19. 19.
    Aman Y, Garnier V, Djurado E (2009) J Eur Ceram Soc 29:3363–3370CrossRefGoogle Scholar
  20. 20.
    Kim BN, Higara K, Morita K, Yoshida H, Miyazaki T, Kagawa Y (2009) Acta Mater 57:1319–1326CrossRefGoogle Scholar
  21. 21.
    Jin X, Gao L, Sun J (2010) J Am Ceram Soc 93:1232–1236Google Scholar
  22. 22.
    Chakravarty D, Sundararajan G (2010) J Am Ceram Soc 93:951–953CrossRefGoogle Scholar
  23. 23.
    Jiang DT, Hulbert DM, Tamburini UA, Ng T, Land D, Mukherjee AK (2008) J Am Ceram Soc 91:151–154CrossRefGoogle Scholar
  24. 24.
    Strassburger E (2009) J Eur Ceram Soc 29:267–273CrossRefGoogle Scholar
  25. 25.
    Krell A, Klimke J, Hutzler T (2009) J Eur Ceram Soc 29:275–281CrossRefGoogle Scholar
  26. 26.
    Krell A, Hutzler T, Klimke J (2009) J Eur Ceram Soc 29:207–221CrossRefGoogle Scholar
  27. 27.
    Krell A, Strassburger E (2001) Ceram Trans 134:463–471Google Scholar
  28. 28.
    Cheng J, Agarwal D, Roy R (2004) US Pat No. 6812441 B2, 2 NovGoogle Scholar
  29. 29.
    Krell A, Blank P, Ma H, Hutzler T, Nebelung M (2003) J Am Ceram Soc 86:546–553CrossRefGoogle Scholar
  30. 30.
    Wang SF, Zhang J, Luo DW, Gu F, Tang DY, Dong ZL, Tan GEB, Que WX, Zhang TS, Li S, Kong LB (2013) Prog Sol St Chem 41:20–54CrossRefGoogle Scholar
  31. 31.
    Lamouri S, Hamidouche M, Bouaouadja N, Bellhouchet H, Garnier V, Fantozzi G, Trelkat JF (2017) Bull Span Soc Ceram Glas 56:47–54Google Scholar
  32. 32.
    Kong LB, Huang YZ, Que WX, Zhang TS, Li S, Zhang J, Dong ZL, Tang DY (2015) https://doi.org/10.1007/978-3-319-18956-7-2: 29–91

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ceramic ProcessingInternational Advanced Research Centre for Powder Metallurgy and New Materials, (ARCI)HyderabadIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology WarangalWarangalIndia

Personalised recommendations