Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 239–254 | Cite as

Rapid fabrication of hybrid aerogels and 3D printed porous materials

  • M. F. Bertino
Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


In this manuscript, methods will be reviewed that alleviate or solve processing issues of aerogels. Techniques will be described that allow one-pot, rapid synthesis of both native-aerogels and mechanically reinforced-aerogels, as well as porous oxide monoliths with hierarchical pore size distribution. Farther, techniques will be reviewed that allow fabrication of inhomogeneous/anisotropic porous monoliths. Techniques will be described that allow to reinforce or functionalize selected regions of monoliths. These techniques are photolithographic in nature and allow to fabricate a wide variety of structures, including honeycombs and functionally graded materials. These materials consist of functionalized and/or mechanically reinforced regions embedded into an otherwise native aerogels and they will be termed as “hybrid”. Finally, techniques will be reviewed that alleviate or solve geometrical constraints. Typically, porous materials are produced by pouring a sol into a mold. Techniques will be presented that allow additive manufacturing of porous materials. It will be shown that technical issues likely prevent large-scale additive manufacturing of oxide aerogels. However, techniques are available and will be discussed which allow additive manufacturing of porous polymeric structures.


Aerogels Sol–gel materials Processing methods Additive manufacturing 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) J Non-Cryst Solids 188:226–234CrossRefGoogle Scholar
  2. 2.
    Schultz JM, Jensen KI, Kristiansen FH (2005) Sol Energy Mater Sol Cells 89:275–285CrossRefGoogle Scholar
  3. 3.
    Schneider M, Baiker A (1995) Catal Rev-Sci Eng 37:515–556CrossRefGoogle Scholar
  4. 4.
    Reynolds JG, Coronado PR, Hrubesh LW (2001) J Non-Cryst Solids 292:127–137CrossRefGoogle Scholar
  5. 5.
    Zheng QF, Cai Z, Gong S (2014) J Mater Chem A 2:3110–3118CrossRefGoogle Scholar
  6. 6.
    Bruns S, Hara T, Smarsly BM, Tallarek U (2011) J Chromatogr A 1218:5187–5194CrossRefGoogle Scholar
  7. 7.
    Rubenstein DA, Lu H, Mahadik SS, Leventis N, Yin W (2012) J Biomater Sci-Polym Ed 23:1171–1184Google Scholar
  8. 8.
    Hong H, Wang C, Yuan Y, Qu X, Wei J, Lin Z, Zhou H, Liu C (2016) RSC Adv 6:78930–78935CrossRefGoogle Scholar
  9. 9.
    Woignier T, Phalippou J (1998) J Non-Cryst Solids 100:404–408CrossRefGoogle Scholar
  10. 10.
    Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957–960CrossRefGoogle Scholar
  11. 11.
    Jones SM (2007) J Sol-Gel Sci Technol 44:255–258CrossRefGoogle Scholar
  12. 12.
    Ueberfuhr P, Hammerschmidt J, Glaeser K, Goedel WA, Baumann RR (2012) NIP28: 28th International Conference On Digital Printing Technologies, Digital Fabrication. pp 550–553Google Scholar
  13. 13.
    White LS, Bertino MF, Cartin C, Angello J, Schwan M, Milow B, Ratke L (2018) Fabrication of mechanically strong honeycombs with aerogel cores. Ind Eng Chem Res 57:1197–1206CrossRefGoogle Scholar
  14. 14.
    Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29CrossRefGoogle Scholar
  15. 15.
    Leventis N (2007) Acc Chem Res 40:874CrossRefGoogle Scholar
  16. 16.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112CrossRefGoogle Scholar
  17. 17.
    von der Lehr M, Hormann K, Höltzel A, White LS, Reising AE, Bertino MF, Smarsly BM, Tallarek U (2017) Microporous and Mesoporous Materials 243:247–253Google Scholar
  18. 18.
    Petersen EE (1958) A 1 Ch E J 4:343CrossRefGoogle Scholar
  19. 19.
    van Brakel J, Heertjes PM (1974) Int J Heat Mass Transf 17:1093–1103CrossRefGoogle Scholar
  20. 20.
    Garcia-Gutierrez M, Cormenzana JL, Missana T, Mingarro M (2004) Appl Clay Sci 26:65–73CrossRefGoogle Scholar
  21. 21.
    Stumpf C, von Gissler K, Reichenauer G, Fricke J (1992) J Non-Cryst Solids 145:180–184CrossRefGoogle Scholar
  22. 22.
    Kanungo M, Collinson MM (2005) Langmuir 21:827–829CrossRefGoogle Scholar
  23. 23.
    Smith DM, Stein b D, Anderson JM, Ackerman W (1995) J Non-Cryst Solids 186:104–112CrossRefGoogle Scholar
  24. 24.
    Sharp KG (1994) J Sol-Gel Sci Technol 2:35–41CrossRefGoogle Scholar
  25. 25.
    Sharp KG (1993) PCT Int Appl WO 9 323 333 A1Google Scholar
  26. 26.
    Loy DA, Russick EM, Yamanaka SA, Baugher BM, Shea KJ (1997) Chem Mater 9:2264. CrossRefGoogle Scholar
  27. 27.
    Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C (2010) Chem Mater 22:2790–2803. CrossRefGoogle Scholar
  28. 28.
    Duan Y, Jana SC, Lama B, Espe MP (2013) Langmuir 29:6156. CrossRefGoogle Scholar
  29. 29.
    Kistler SS (1932) J Phys Chem 36:52–64CrossRefGoogle Scholar
  30. 30.
    Pajonk GM, Rao AV, Sawant BM, Parvathy NN (1997) J Non-Cryst Solids 209:40. CrossRefGoogle Scholar
  31. 31.
    Yoda S, Ohshima S (1999) J Non-Cryst Solids 248:224–234CrossRefGoogle Scholar
  32. 32.
    Gross J, Coronado PR, Hrubesh LW (1998) J Non-Cryst Solids 225:282–286CrossRefGoogle Scholar
  33. 33.
    Anderson AM, Wattley CW, Carroll MK (2009) J Non-Cryst Solids 355:101–108CrossRefGoogle Scholar
  34. 34.
    Mainul M, Bhuiya H, Anderson AM, Carroll MK, Bruno BA, Ventrella JL, Silberman B, Keramati B (2016) Ind Eng Chem Res 55:6971–6981CrossRefGoogle Scholar
  35. 35.
    White LS, Bertino MF, Kitchen G, Young J, Newton C, Al-Soubaihi R, Saeed S, Saoud K (2015) J Mater Chem A 3:762–772CrossRefGoogle Scholar
  36. 36.
    White LS, Echard DR, Bertino MF, Gao X, Donthula S, Leventis N, Shukla N, Kośny J, Saeed S, Saoud K (2016) Transl Mater Res 2016(3):015002. CrossRefGoogle Scholar
  37. 37.
    Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Soft Matter 4:2492–2499CrossRefGoogle Scholar
  38. 38.
    Mukai SR, Nishihara H, Tamon H (2003) Microporous Mesoporous Mater 63:43–51CrossRefGoogle Scholar
  39. 39.
    Mukai SR (2011) J Jpn Pet Inst 54:127–135CrossRefGoogle Scholar
  40. 40.
    Klotz M, Amirouche I, Guizard C, Viazzi C, Deville S (2012) Adv Eng Mater 14:1123–1127CrossRefGoogle Scholar
  41. 41.
    Anderson MT, Sawyer PS, Rieker T (1998) Microporous Mesoporous Mater 20:53–65CrossRefGoogle Scholar
  42. 42.
    Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Science 282:2244–2246CrossRefGoogle Scholar
  43. 43.
    Nakanishi K, TAKAHASHI R, NAGAKANE T, Kitayama K, Koheiya N, Shikata H, Soga N (2000) J Sol-Gel Sci Technol 17:191–210CrossRefGoogle Scholar
  44. 44.
    Kuang D, Brezesinski T, Smarsly B (2004) J Am Chem Soc 126:10534–10535CrossRefGoogle Scholar
  45. 45.
    Lu A-H, Smått J-Hk, LindØn M (2005) Adv Funct Mater 15:865–871CrossRefGoogle Scholar
  46. 46.
    Zhao B, Collinson MM (2010) Chem Mater 22:4312–4319CrossRefGoogle Scholar
  47. 47.
    Liu Z, Fan T, Zhang D (2006) J Am Ceram Soc 89:662–665CrossRefGoogle Scholar
  48. 48.
    Lu A-H, Schüth F (2006) Adv Mater 18:1793–1805CrossRefGoogle Scholar
  49. 49.
    Yusuke Y, Prashant G, Naoki F, Keisuke S (2009) Chem Lett 38:78–79CrossRefGoogle Scholar
  50. 50.
    Leventis N, Sotiriou-Leventis C, Chandrasekaran N, Mulik S, Larimore ZJ, Lu H, Churu G, Mang JT (2010) Chem Mater 22:6692–6710CrossRefGoogle Scholar
  51. 51.
    White LS, Bertino MF, Saeed S, Saoud K (2015) Microporous Mesoporous Mater 217:244–252CrossRefGoogle Scholar
  52. 52.
    Mohite DP, Larimore ZJ, Lu H, Mang JT, Sotiriou-Leventis C, Leventis N (2012) Chem Mater 24:3434–3448CrossRefGoogle Scholar
  53. 53.
    Avens HJ, Bowman CN (2009) J Polym Sci 47:6083CrossRefGoogle Scholar
  54. 54.
    Burget D, Mallein C, Fouassier JP (2004) Polymer 45:6561CrossRefGoogle Scholar
  55. 55.
    Wingfield C, Franzel L, Bertino MF, Leventis N (2011) J Mater Chem 21:11737–11741CrossRefGoogle Scholar
  56. 56.
    Schwan M, Milow B, Ratke L (2014) MRS Commun 4:177–181CrossRefGoogle Scholar
  57. 57.
    Joshi SC (2011) Low velocity impact performance of aerogel filled sandwich composites, in Proc. of the 16th Int. Conf. on Composite Structures, Porto, June, 2011Google Scholar
  58. 58.
    Chen K, Neugebauer A, Goutierre T, Tang A, Glicksman L, Gibson LJ (2014) Energy Build 76:336–346CrossRefGoogle Scholar
  59. 59.
    Gibson L, Ashby M (1999) Cellular Solids, structure and properties, 2nd edn. Cambridge solid state science series, Cambridge, UKGoogle Scholar
  60. 60.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) J Biomed Mater Res 74:782–788CrossRefGoogle Scholar
  61. 61.
    Melcher R, Martins S, Travitzky N, Greil P (2006) Mater Lett 60:572–575CrossRefGoogle Scholar
  62. 62.
    Ryan GE, Pandit AS, Apatsidis DP (2008) Biomaterials 29:3625–3635CrossRefGoogle Scholar
  63. 63.
    Lee K-W, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ (2006) Tiss Eng 12:2801–2811CrossRefGoogle Scholar
  64. 64.
    Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJA (2009) Biomacromolecules 10:1689–1696CrossRefGoogle Scholar
  65. 65.
    Xiao ZY, Wang A, Perumal J, Kim D-P (2010) Adv Funct Mater 20:1473–1479CrossRefGoogle Scholar
  66. 66.
    Jayasinghe SN, Sullivan AC (2006) J Phys Chem B 110:2522–2528CrossRefGoogle Scholar
  67. 67.
    Sullivan AC, Jayasinghe SN (2007) Biomicrofluidics 1:034103CrossRefGoogle Scholar
  68. 68.
    Jayasinghe SN (2011) Analyst 136:878–890CrossRefGoogle Scholar
  69. 69.
    Hellmann GP, Kottlorz C, Presser J, Utaloff K (2014) J Mater Res 29:1833CrossRefGoogle Scholar
  70. 70.
    Saoud K, Saeed S, Al-Soubahihi R, Bertino M, White LS (2015) J Mater Chem A 3:17606–11CrossRefGoogle Scholar
  71. 71.
    Sakka S, Kamiya K (1982) J Non-Cryst Solids 48:31–46CrossRefGoogle Scholar
  72. 72.
    Bertino MF, Gadipalli RR, Story JG, Williams CG, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Guha S, Leventis N (2004) Appl Phys Lett 85:6007CrossRefGoogle Scholar
  73. 73.
    Reddy SK, Cramer NB, Cross T, Raj R, Bowman CN (2003) Chem Mater 15:4257–4261CrossRefGoogle Scholar
  74. 74.
    Wingfield C, Baski A, Bertino MF, Leventis N, Mohite DP, Lu H (2009) Chem Mater 21:2108–2114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations