Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 293–304 | Cite as

Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics

  • V. Anand
  • A. Sakthivelu
  • K. Deva Arun Kumar
  • S. Valanarasu
  • V. Ganesh
  • Mohd Shkir
  • S. AlFaify
  • H. Algarni
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 115 Downloads

Abstract

Rare earth element (i.e.) europium co-doped aluminum zinc oxide (Eu:AZO) thin films were deposited on microscope glass slides by nebulizer spray pyrolysis with different Eu-doping concentrations (0, 0.5, 1, and 1.5%). The deposited films were investigated using X-ray diffraction, AFM, EDAX, FT-Raman, UV–visible, PL, and Hall effect measurements. X-ray confirmed the incorporation of aluminum and europium ions into the ZnO structure. All films have polycrystalline nature with hexagonal wurtzite structure at (002) direction. Topological depictions exhibited minimum surface roughness and low film thickness for pristine AZO thin film. EDAX study authorizes the existence of Zn, O, Al, and Eu in Eu: AZO thin films. Raman spectra exhibited the characteristic of ZnO-wurtzite structure (E2-high) mode at 447 cm−1. The deposited film showed high optical transmittance of ~90% in visible region, and the direct energy gap was around 3.30 eV for pristine AZO thin film. The PL spectra emitted a powerful UV emission situated at 388 nm, and it indicates that the film has good optical quality. The obtained large carrier concentration and less resistivity values are 4.42 × 1021 cm−3 and 3.95 × 10−4 Ω cm, respectively, for 1.5% Eu-doped AZO thin film. The calculated figure of merit value is 17.29 × 10−3 (Ω/sq)−1, which is more suitable for the optoelectronic device.

Keywords

Rare earth Eu:AZO thin film Nebulizer spray pyrolysis Optoelectronic application 

Notes

Acknowledgements

MS and HA extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P. 2/37/39.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hoel CA, Mason TO, Gaillard J-F, Poeppelmeier KR (2010) Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chem Mater 22:3569–3579CrossRefGoogle Scholar
  2. 2.
    Ozgur U, Hofstetter D, Morkoc H (2010) ZnO devices and applications: a review of current status and future prospects. Proc IEEE 98:1255–1268CrossRefGoogle Scholar
  3. 3.
    Cao B, Li Y, Duan G, Cai W (2006) Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des 6:1091–1095CrossRefGoogle Scholar
  4. 4.
    Cao B, Teng X, Heo SH, Li Y, Cho SO, Li G, Cai W (2007) Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties. J Phys Chem C 111:2470–2476CrossRefGoogle Scholar
  5. 5.
    Kashif M, Hashim U, Ali ME, Usman Ali SM, Rusop M, Ibupoto ZH, Willander M (2012) Effect of different seed solutions on the morphology and electro-optical properties of ZnO nanorods. J Nanomater 2012:106CrossRefGoogle Scholar
  6. 6.
    Stadler A (2012) Transparent conducting oxides—an up-to-date overview. Materials 5:661–683CrossRefGoogle Scholar
  7. 7.
    Ravichandran K, Dineshbabu N, Arun T, Ravidhas C, Valanarasu S (2016) Effect of fluorine (an anionic dopant) on transparent conducting properties of Sb (a cationic) doped ZnO thin films deposited using a simplified spray technique. Mater Res Bull 83:442–452CrossRefGoogle Scholar
  8. 8.
    Swapna R, SrinivasaReddy T, Venkateswarlu K, Kumar MS (2015) Effect of post-annealing on the properties of Eu doped ZnO nano thin films. Proc Mater Sci 10:723–729CrossRefGoogle Scholar
  9. 9.
    Zhang J, Que W (2010) Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol Energy Mater Sol Cells 94:2181–2186CrossRefGoogle Scholar
  10. 10.
    Hsu C-H, Chen D-H (2010) Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 21:285603CrossRefGoogle Scholar
  11. 11.
    Kim W-H, Maeng W, Kim M-K, Kim H (2011) Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes. J Electrochem Soc 158:D495–D499CrossRefGoogle Scholar
  12. 12.
    Edison DJ, Nirmala W, Kumar KDA, Valanarasu S, Ganesh V, Shkir M, AlFaify S (2017) Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys B Condens Matter 523:31–38CrossRefGoogle Scholar
  13. 13.
    Farbod M, Shoushtari MZ, Parhoodeh S (2011) Fabrication and characterization of Zn1−xAlxO nanoparticles by DC arc plasma. Phys B Condens Matter 406:205–210CrossRefGoogle Scholar
  14. 14.
    Nomoto J-i, Hirano T, Miyata T, Minami T (2011) Preparation of Al-doped ZnO transparent electrodes suitable for thin-film solar cell applications by various types of magnetron sputtering depositions. Thin Solid Films 520:1400–1406CrossRefGoogle Scholar
  15. 15.
    Gâlcă A, Secu M, Vlad A, Pedarnig J (2010) Optical properties of zinc oxide thin films doped with aluminum and lithium. Thin Solid Films 518:4603–4606CrossRefGoogle Scholar
  16. 16.
    Ohgaki T, Kawamura Y, Kuroda Y, Ohashi N, Adachi Y, Tsurumi T, Minami F, Haneda H (2003) Optical properties of heavily aluminum-doped zinc oxide thin films prepared by molecular beam epitaxy. Key Eng Mater Trans Tech Publ 248:91–94Google Scholar
  17. 17.
    Mahmood K, Park SB (2013) Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: effects of Al doping and annealing treatment. Electron Mater Lett 9:161–170CrossRefGoogle Scholar
  18. 18.
    Kumar KDA, Valanarasu S, Tamilnayagam V, Amalraj L (2017) Structural, morphological and optical properties of SnS2 thin films by nebulized spray pyrolysis technique. J Mater Sci Mater Electron 28:14209–14216CrossRefGoogle Scholar
  19. 19.
    Petersen J, Brimont C, Gallart M, Schmerber G, Gilliot P, Ulhaq-Bouillet C, Rehspringer J-L, Colis S, Becker C, Slaoui A (2010) Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering. J Appl Phys 107:123522CrossRefGoogle Scholar
  20. 20.
    Misra KP, Shukla R, Srivastava A, Srivastava A (2009) Blueshift in optical band gap in nanocrystalline Zn1−xCaxO films deposited by sol-gel method. Appl Phys Lett 95:031901CrossRefGoogle Scholar
  21. 21.
    Shkir M, AlFaify S (2017) Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci Rep 7:16091CrossRefGoogle Scholar
  22. 22.
    Shkir M, AlFaify S, Ganesh V, Yahia IS (2017) Facile one pot synthesis of PbS nanosheets and their characterization. Solid State Sci 70:81–85CrossRefGoogle Scholar
  23. 23.
    Shkir M, Yahia IS, Ganesh V, Algarni H, AlFaify S (2016) Facile hydrothermal-assisted synthesis of Gd3+ doped PbI2 nanostructures and their characterization. Mater Lett 176:135–138CrossRefGoogle Scholar
  24. 24.
    Kumar KDA, Ganesh V, Shkir M, AlFaify S, Valanarasu S (2017) Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J Mater Sci Mater Electron 29:887–897Google Scholar
  25. 25.
    Williamson G, Smallman R (1956) III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos Mag 1:34–46CrossRefGoogle Scholar
  26. 26.
    Klug P, Alexander L (1954) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar
  27. 27.
    Shkir M, Kilany M, Yahia IS (2017) Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram Int 43:14923–14931CrossRefGoogle Scholar
  28. 28.
    Shkir M, AlFaify S, Yahia IS, Hamdy MS, Ganesh V, Algarni H (2017) Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J Nanopart Res 19:328CrossRefGoogle Scholar
  29. 29.
    Kasar R, Deshpande N, Gudage Y, Vyas J, Sharma R (2008) Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide (SnO 2) thin films with different substrate temperatures. Phys B Condens Matter 403:3724–3729CrossRefGoogle Scholar
  30. 30.
    Barrett C, Massalski TB (1980) Structure of metals, crystallographic methods, principles and data. In: International series on materials science and technology. Pergamon, OxfordGoogle Scholar
  31. 31.
    Kumar KDA, Valanarasu S, Kathalingam A, Ganesh V, Shkir M, AlFaify S (2017) Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: a film for key optoelectronic applications. Appl Phys A 123:801CrossRefGoogle Scholar
  32. 32.
    El-Kadry N, Ashour A, Mahmoud S (1995) Structural dependence of dc electrical properties of physically deposited CdTe thin films. Thin Solid Films 269:112–116CrossRefGoogle Scholar
  33. 33.
    Kumar KDA, Valanarasu S, Ganesh V, Shkir M, Kathalingam A, AlFaify S (2018) Effect of precursors on key opto-electrical properties of successive ion layer adsorption and reaction-prepared Al:ZnO thin films. J Electron Mater 47:1335–1343CrossRefGoogle Scholar
  34. 34.
    Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev E, Lorenz M, Grundmann M (2003) Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett 83:1974–1976CrossRefGoogle Scholar
  35. 35.
    Manghnani MH, Hushur A, Sekine T, Wu J, Stebbins JF, Williams Q (2011) Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass. J Appl Phys 109:113509CrossRefGoogle Scholar
  36. 36.
    Ravichandran K, Mohan R, Begum NJ, Snega S, Swaminathan K, Ravidhas C, Sakthivel B, Varadharajaperumal S (2014) Impact of spray flux density and vacuum annealing on the transparent conducting properties of doubly doped (Sn + F) zinc oxide films deposited using a simplified spray technique. Vacuum 107:68–76CrossRefGoogle Scholar
  37. 37.
    Rafea MA, Roushdy N (2008) Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. J Phys D Appl Phys 42:015413CrossRefGoogle Scholar
  38. 38.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637CrossRefGoogle Scholar
  39. 39.
    Shakir M, Kushwaha S, Maurya K, Bhagavannarayana G, Wahab M (2009) Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun 149:2047–2049CrossRefGoogle Scholar
  40. 40.
    Shkir M, Ganesh V, AlFaify S, Yahia IS, Zahran HY (2018) Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J Mater Sci Mater Electron 29:6446–6457CrossRefGoogle Scholar
  41. 41.
    Zamiri R, Lemos A, Reblo A, Ahangar HA, Ferreira J (2014) Effects of rare-earth (Er, La and Yb) doping on morphology and structure properties of ZnO nanostructures prepared by wet chemical method. Ceram Int 40:523–529CrossRefGoogle Scholar
  42. 42.
    Moss T (1959) Optical process in semiconductors. Butter Worths, LondonGoogle Scholar
  43. 43.
    Zundu L, Yidong H (2004) Qualitative analysis of relationship between refractive index and atomic parameters of solid materials J Rare Earths 22:486–488Google Scholar
  44. 44.
    Usha K, Sivakumar R, Sanjeeviraja C (2013) Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J Appl Phys 114:123501CrossRefGoogle Scholar
  45. 45.
    Ali Omar M (1993) Elementary solid state physics. Addison-Wesley, Reading, MAGoogle Scholar
  46. 46.
    Sagar P, Shishodia P, Mehra R, Okada H, Wakahara A, Yoshida A (2007) Photoluminescence and absorption in sol–gel-derived ZnO films. J Lumin 126:800–806CrossRefGoogle Scholar
  47. 47.
    Ma L, Ma S, Chen H, Ai X, Huang X (2011) Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering. Appl Surf Sci 257:10036–10041CrossRefGoogle Scholar
  48. 48.
    Lyu SC, Zhang Y, Ruh H, Lee H-J, Shim H-W, Suh E-K, Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem Phys Lett 363:134–138CrossRefGoogle Scholar
  49. 49.
    Kong Y, Yu D, Zhang B, Fang W, Feng S (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407–409CrossRefGoogle Scholar
  50. 50.
    Mahroug A, Boudjadar S, Hamrit S, Guerbous L (2014) Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Mater Lett 134:248–251CrossRefGoogle Scholar
  51. 51.
    Kang HS, Kang JS, Kim JW, Lee SY (2004) Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J Appl Phys 95:1246–1250CrossRefGoogle Scholar
  52. 52.
    Tarwal N, Jadhav P, Vanalakar S, Kalagi S, Pawar R, Shaikh J, Mali S, Dalavi D, Shinde P, Patil P (2011) Photoluminescence of zinc oxide nanopowder synthesized by a combustion method. Powder Technol 208:185–188CrossRefGoogle Scholar
  53. 53.
    Luo L, Huang F, Dong G, Fan H, Li K, Cheah K, Chen J (2014) Strong luminescence and efficient energy transfer in Eu3+/Tb3+-codoped ZnO nanocrystals. Opt Mater 37:470–475CrossRefGoogle Scholar
  54. 54.
    Bedia FZ, Bedia A, Maloufi N, Aillerie M, Genty F, Benyoucef B (2014) Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J Alloy Compd 616:312–318CrossRefGoogle Scholar
  55. 55.
    Shen H-l, Zhang H, Lu L-f, Jiang F, Chao Y (2010) Preparation and properties of AZO thin films on different substrates. Progress Nat Sci Mater Int 20:44–48CrossRefGoogle Scholar
  56. 56.
    Yakuphanoglu F (2009) Electrical conductivity, Seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating. J Alloy Compd 470:55–59CrossRefGoogle Scholar
  57. 57.
    Haacke G (1976) New figure of merit for transparent conductors. J Appl Phys 47:4086–4089CrossRefGoogle Scholar
  58. 58.
    Kumar KDA, Valanarasu S, Jeyadheepan K, Kim H-S, Vikraman D (2017) Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics. J Mater Sci Mater Electron 29:3648–3656CrossRefGoogle Scholar
  59. 59.
    Babar A, Deshamukh P, Deokate R, Haranath D, Bhosale C, Rajpure K (2008) Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J Phys D Appl Phys 41:135404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics DepartmentVKS College of Engineering and TechnologyKarurIndia
  2. 2.PG and Research Department of PhysicsPeriyar E.V.R. CollegeTrichyIndia
  3. 3.PG and Research Department of PhysicsArul Anandar College-KarumathurMaduraiIndia
  4. 4.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations