Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 391–399 | Cite as

Reinforced silica-carbon nanotube monolithic aerogels synthesised by rapid controlled gelation

  • Manuel Piñero
  • María del Mar Mesa-Díaz
  • Desirée de los Santos
  • María V. Reyes-Peces
  • José A. Díaz-Fraile
  • Nicolás de la Rosa-Fox
  • Luis Esquivias
  • Victor Morales-Florez
Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)


This work introduces a new synthesis procedure for obtaining homogeneous silica hybrid aerogels with carbon nanotube contents up to 2.50 wt.%. The inclusion of nanotubes in the highly porous silica matrix was performed by a two-step sol–gel process, resulting in samples with densities below 80 mg/cm3. The structural analyses (N2 physisorption and SEM) revealed the hierarchical structure of the porous matrix formed by nanoparticles arranged in clusters of 100 and 300 nm in size, specific surface areas around 600 m2/g and porous volumes above 4.0 cm3/g. In addition, a relevant increase on the mechanical performance was found, and an increment of 50% for the compressive strength and 90% for the maximum deformation were measured by uniaxial compression. This reinforcement was possible thanks to the outstanding dispersion of the CNT within the silica matrix and the formation of Si–O–C bridges between nanotubes and silica matrix, as suggested by FTIR. Therefore, the original synthesis procedure introduced in this work allows the fabrication of highly porous hybrid materials loaded with carbon nanotubes homogeneously distributed in the space, which remain available for a variety of technological applications.


Silica hybrid aerogel Carbon nanotube Controlled gelation Structure Reinforcement Mechanical properties. 



Dr. Miguel Castillo is acknowledged for their wise advises and original ideas. Mr. Alejandro Jurado-Jiménez is acknowledged for his contributions to the starting of this work during his stage at our laboratory. Dr. Alberto Santos and Mr. José Francisco Hidalgo Ramírez are acknowledged for their help in the experimental setup. The technical staff of the characterisation services of the CITIUS (Universidad de Sevilla) is also acknowledged. J.A.D.F. thanks the grant from VI Plan Propio de la Universidad de Sevilla for 'starting researchers', M.V.R.P. thanks the 'Programa de contratación de personal técnico de apoyo a la I+D+I 2017' from the Junta de Andalucía (Spain) and V.M.F thanks the postdoctoral grant from the 'V Plan Propio de la Universidad de Sevilla'. This work has been financed by the support of the Junta de Andalucía (Spain) to the research group TEP-115 (Spain) and by the 'Plan Propio de Investigación (I.5 Ayudas uso SGI)' of the Universidad de Sevilla.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Morris C (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284:622–624. CrossRefGoogle Scholar
  2. 2.
    Anderson M, Stroud R, Rolison D (2002) Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon−silica composite aerogels. Nano Lett 2:235–240. CrossRefGoogle Scholar
  3. 3.
    Warren S, Perkins M, Adams A et al. (2012) A silica sol–gel design strategy for nanostructured metallic materials. Nat Mater 11:460–467. CrossRefGoogle Scholar
  4. 4.
    Brinker C, Scherer G (1990) Sol-gel science, the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Aegerter M, Leventis N, Koebel M (2011) Aerogels handbook. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A (2002) Nanoengineering strong silica aerogels. Nano Lett 2:957–960. CrossRefGoogle Scholar
  7. 7.
    de la Rosa-Fox N, Morales-Flórez V, Toledo-Fernández J et al. (2007) Nanoindentation on hybrid organic/inorganic silica aerogels. J Eur Ceram Soc 27:3311–3316. CrossRefGoogle Scholar
  8. 8.
    Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non Cryst Solids 385:55–74. CrossRefGoogle Scholar
  9. 9.
    Ślosarczyk A, Wojciech S, Piotr Z, Paulina J (2015) Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J Non Cryst Solids 416:1–3. CrossRefGoogle Scholar
  10. 10.
    Zhao S, Zhang Z, Sèbe G et al. (2015) Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv Funct Mater 25:2326–2334. CrossRefGoogle Scholar
  11. 11.
    Tang X, Sun A, Chu C et al. (2017) A novel silica nanowire-silica composite aerogels dried at ambient pressure. Mater Des 115:415–421. CrossRefGoogle Scholar
  12. 12.
    Hou X, Zhang R, Fang D (2018) An ultralight silica-modified ZrO 2 –SiO 2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength. Scr Mater 143:113–116. CrossRefGoogle Scholar
  13. 13.
    Coleman J, Khan U, Blau W, Gun’ko Y (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652. CrossRefGoogle Scholar
  14. 14.
    Esawi A, Farag M (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28:2394–2401. CrossRefGoogle Scholar
  15. 15.
    Liu Y, Ramirez C, Zhang L et al. (2017) In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes. Acta Mater 127:203–210. CrossRefGoogle Scholar
  16. 16.
    Esquivias L, Piñero M, Morales-Flórez V, de la Rosa-Fox N (2011). In: Aegerter M, Leventis N, Koebel M (eds) Aerogels Handbook, Springer, New YorkGoogle Scholar
  17. 17.
    Berguiga L, Bellessa J, Vocanson F et al. (2006) Carbon nanotube silica glass composites in thin films by the sol–gel technique. Opt Mater 28:167–171. CrossRefGoogle Scholar
  18. 18.
    Eder D (2010) Carbon nanotube−inorganic hybrids. Chem Rev 110:1348–1385. CrossRefGoogle Scholar
  19. 19.
    López A, Ureña A, Rams J (2011) Wear resistant coatings: silica sol–gel reinforced with carbon nanotubes. Thin Solid Films 519:7904–7910. CrossRefGoogle Scholar
  20. 20.
    Yusof Y, Johan M (2014) Concentration-dependent properties of amorphous carbon nanotube/silica composites via the sol–gel technique. CrystEngComm 16:8570–8575. CrossRefGoogle Scholar
  21. 21.
    Loo S, Idapalapati S, Wang S et al. (2007) Effect of surfactants on MWCNT-reinforced sol–gel silica dielectric composites. Scr Mater 57:1157–1160. CrossRefGoogle Scholar
  22. 22.
    OH t, Choi C (2010) Comparison between SiOC thin film by plasma enhance chemical vapor deposition and SiO2 thin film by fourier transform infrared spectroscopy. J Korean Phys Soc 56:1150–1155. CrossRefGoogle Scholar
  23. 23.
    Hassan M, Takahashi T, Koyama K (2013) Preparation and characterisation of SiOC ceramics made from a preceramic polymer and rice bran. J Eur Ceram Soc 33:1207–1217. CrossRefGoogle Scholar
  24. 24.
    Esquivias L, Rodriguez-Ortega J, Barrera-Solano C, De La Rosa-Fox N (1998) Structural models of dense aerogels. J Non Cryst Solids 225:239–243. Scholar
  25. 25.
    Morales-Flórez V, Piñero M, de la Rosa-Fox N et al. (2008) The cluster model: a hierarchically-ordered assemblage of random-packing spheres for modelling microstructure of porous materials. J Non Cryst Solids 354:193–198. CrossRefGoogle Scholar
  26. 26.
    Amonette J, Matyáš J (2017) Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater 250:100–119. CrossRefGoogle Scholar
  27. 27.
    Zamora-Ledezma C, Añez L, Primera J et al. (2008) Photoluminescent single wall carbon nanotube–silica composite gels. Carbon 46:1253–1255. CrossRefGoogle Scholar
  28. 28.
    Vila M, Hueso J, Manzano M et al. (2009) Carbon nanotubes—mesoporous silica composites as controllable biomaterials. J Mater Chem 19:7745. CrossRefGoogle Scholar
  29. 29.
    Bargozin H, Amrikhani L, Moghaddas JS, Ahadian MM (2010) Synthesis and applications of silica aerogel-MWCNT nanocomposites for adsorption of organic pollutants. Trans F 17:122–132Google Scholar
  30. 30.
    Duque J, Gupta G, Cognet L et al. (2011) New route to fluorescent single-walled carbon nanotube/silica nanocomposites: balancing fluorescence intensity and environmental sensitivity. J Phys Chem C 115:15147–15153. CrossRefGoogle Scholar
  31. 31.
    Shearer C, Cherevan A, Eder D (2014) Application and future challenges of functional nanocarbon hybrids. Adv Mater 26:2295–2318. CrossRefGoogle Scholar
  32. 32.
    Sivakumar R, Guo S, Nishimura T, Kagawa Y (2007) Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scr Mater 56:265–268. CrossRefGoogle Scholar
  33. 33.
    Ślosarczyk A (2017) Synthesis and characterization of silica aerogel-based nanocomposites with carbon fibers and carbon nanotubes in hybrid system. J Sol-Gel Sci Technol 84:16–22. CrossRefGoogle Scholar
  34. 34.
    Hamilton C, Chavez M, Duque J et al. (2010) Carbon nanomaterials in silica aerogel matrices. MRS Proceedings 1258.
  35. 35.
    Duque J, Hamilton C, Gupta G et al. (2011) Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments. ACS Nano 5:6686–6694. CrossRefGoogle Scholar
  36. 36.
    Chernov A, Predein A, Danilyuk A et al. (2016) Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Phys Status Solidi (b) 253:2440–2445. CrossRefGoogle Scholar
  37. 37.
    Menshutina N, Ivanov S, Tsygankov P, Khudeev I (2017) Synthesis and characterization of composite materials “aerogel-MWCNT”. J Sol-Gel Sci Technol 84:382–390. CrossRefGoogle Scholar
  38. 38.
    ASTM D7012-14e1 (2014) Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken PA USAGoogle Scholar
  39. 39.
    Dervin S, Lang Y, Perova T et al. (2017) Graphene oxide reinforced high surface area silica aerogels. J Non Cryst Solids 465:31–38. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manuel Piñero
    • 1
  • María del Mar Mesa-Díaz
    • 2
  • Desirée de los Santos
    • 3
  • María V. Reyes-Peces
    • 1
  • José A. Díaz-Fraile
    • 4
  • Nicolás de la Rosa-Fox
    • 1
  • Luis Esquivias
    • 4
  • Victor Morales-Florez
    • 4
  1. 1.Dpto. Física de la Materia CondensadaUniversidad de CádizPuerto RealSpain
  2. 2.Dpto. Ingeniería QuímicaUniversidad de CádizPuerto RealSpain
  3. 3.Dpto. Química-FísicaUniversidad de CádizPuerto RealSpain
  4. 4.Dpto. Física de la Materia CondensadaUniversidad de SevillaSevilleSpain

Personalised recommendations