Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 479–492 | Cite as

Preparation of mesoporous crack-free Sb-SnO2 xerogels through ambient-pressure drying and its application as three-dimensional electrode

  • Siqi Liu
  • Xiezhen Zhou
  • Weiqing Han
  • Jiansheng Li
  • Xiuyun Sun
  • Jinyou Shen
  • Lianjun Wang
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 93 Downloads

Abstract

Ambient-pressure-dried (APD) crack-free Sb-SnO2 xerogel has been developed through a facile sol-gel approach. Propylene oxide was added into the tin and antimony precursors to cause rapid formation of the wet gel, which was then modified with silica and dried under ambient pressure. A silica modification carried out by soaking the wet gel in TEOS/ethanol solution, in combination with solvent exchange, allowed to avoid the risky and costly supercritical drying (SCD) process. The silica possessed dual-functional effects during the synthesis process as surface silylation agent and underlying silica structure. FT-IR, SAXS, TEM, and nitrogen physisorption analysis revealed a favorable silica dispersion, outstanding specific surface area (254 m2 g−1), pore volume (0.52 cm3 g−1), and ideal pore size (8.75 nm) for the products. The key properties of the APD crack-free Sb-SnO2 xerogel were compared with that of SCD aerogel at the same synthesis conditions. Finally, the electrochemical behaviors of 3D electrochemical system filled with the as-synthesized materials as particle electrodes were investigated, which with regard to voltammetric charge and polarization impedance. Padding of the crack-free Sb-SnO2 xerogels yielded a voltammetric charge 2.99 times as large as that of conventional electrochemical system, and decreased the charge transfer resistance from 46.19 to 6.39 Ω, which realize intrinsically enhanced electrochemical performance for 3D electrochemical system.

Keywords

Crack-free xerogles Silica modification Ambient-pressure drying Porous electrodes Three-dimensional electrod 

Notes

Acknowledgements

This work was partially supported by National Science Technology Support Plan of China (2014BAC08B03), Natural Science Foundation of China (51578287).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467.  https://doi.org/10.1016/j.cej.2013.05.033 CrossRefGoogle Scholar
  2. 2.
    Bae JH, Han JH, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14(2):448–463.  https://doi.org/10.1039/c1cp22927c CrossRefGoogle Scholar
  3. 3.
    Malek K, Coppens M-O (2001) Effects of surface roughness on self- and transport diffusion in porous media in the Knudsen regime. Phys Rev Lett 87(12):125505CrossRefGoogle Scholar
  4. 4.
    Park S, Song YJ, Han J-H, Boo H, Chung TD (2010) Structural and electrochemical features of 3D nanoporous platinum electrodes. Electrochim Acta 55(6):2029–2035.  https://doi.org/10.1016/j.electacta.2009.11.026 CrossRefGoogle Scholar
  5. 5.
    Hankil Boo PL, Sejin Park PL, Bonkyung Ku PL, Vunmee Kim PL, Jin Hyung Park PL, Hee Chan K, Taek Dong C (2004) Ionic strength-controlled virtual area of mesoporous platinum electrode. J Am Chem Soc 126(14):4524–4525CrossRefGoogle Scholar
  6. 6.
    Boo H, Park S, Ku B, Kim Y, Park JH, Kim HC, Chung TD (2004) Ionic strength-controlled virtual area of mesoporous platinum electrode. J Am Chem Soc 126(14):4524–4525.  https://doi.org/10.1021/ja0398316 CrossRefGoogle Scholar
  7. 7.
    Zhu X, Ni J, Xing X, Li H, Jiang Y (2011) Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochim Acta 56(3):1270–1274.  https://doi.org/10.1016/j.electacta.2010.10.073 CrossRefGoogle Scholar
  8. 8.
    Lv G, Wu D, Fu R (2009) Performance of carbon aerogels particle electrodes for the aqueous phase electro-catalytic oxidation of simulated phenol wastewaters. J Hazard Mater 165(1–3):961–966.  https://doi.org/10.1016/j.jhazmat.2008.10.090 CrossRefGoogle Scholar
  9. 9.
    Kong W, Wang B, Ma H, Gu L (2006) Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. J Hazard Mater 137(3):1532–1537.  https://doi.org/10.1016/j.jhazmat.2006.04.037 CrossRefGoogle Scholar
  10. 10.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment Electrochim Acta 39(11):1857–1862.https//doi.org/10.1016/0013-4686(94)85175-1CrossRefGoogle Scholar
  11. 11.
    Pulgarin C, Adler N, Péringer P, Comninellis C (1994) Electrochemical detoxification of a 1,4-benzoquinone solution in wastewater treatment Water Res 28(4):887–893.https://doi.org/10.1016/0043-1354(94)90095-7CrossRefGoogle Scholar
  12. 12.
    Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43(5):1480–1486.  https://doi.org/10.1021/es802155p CrossRefGoogle Scholar
  13. 13.
    Wu T, Zhao G, Lei Y, Li P (2011) Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J Phys Chem C 115(10):3888–3898.  https://doi.org/10.1021/jp110149v CrossRefGoogle Scholar
  14. 14.
    Lipp L, Pletcher D (1997) The preparation and characterization of tin dioxide coated titanium electrodes Electrochim Acta 42(7):1091–1099.https://doi.org/10.1016/S0013-4686(96)00257-5CrossRefGoogle Scholar
  15. 15.
    Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol–gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13(3):999–1007.  https://doi.org/10.1021/cm0007611 CrossRefGoogle Scholar
  16. 16.
    Correa Baena JP, Agrios AG (2014) Transparent conducting aerogels of antimony-doped tin oxide. ACS Appl Mater Interfaces 6(21):19127–19134.  https://doi.org/10.1021/am505115x CrossRefGoogle Scholar
  17. 17.
    Harreld JH, Sakamoto J, Dunn B (2003) Non-hydrolytic sol–gel synthesis and electrochemical characterization of tin-based oxide aerogels J Power Sources 115(1):19–26.https://doi.org/10.1016/S0378-7753(02)00626-2CrossRefGoogle Scholar
  18. 18.
    Baumann TF, Kucheyev SO, Gash AE, Satcher JH (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv Mater 17(12):1546–1548.  https://doi.org/10.1002/adma.200500074 CrossRefGoogle Scholar
  19. 19.
    Wu NL, Hwang JY, Liu PY, Han CY, Kuo SL, Liao KH, Lee MH, Wang SY (2001) Synthesis and characterization of Sb-doped SnO[sub 2] xerogel electrochemical capacitor. J Electrochem Soc 148(6):A550.  https://doi.org/10.1149/1.1368099 CrossRefGoogle Scholar
  20. 20.
    Chiappim W, Awano CM, Donatti DA, de Vicente FS, Vollet DR (2014) Structure of hydrophobic ambient-pressure-dried aerogels prepared by sonohydrolysis of tetraethoxysilane with additions of N,N-dimethylformamide. Langmuir 30(4):1151–1159.  https://doi.org/10.1021/la403798t CrossRefGoogle Scholar
  21. 21.
    Parvathy Rao A, Venkateswara Rao A (2010) Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. J Mater Sci 45(1):51–63.  https://doi.org/10.1007/s10853-009-3888-7 CrossRefGoogle Scholar
  22. 22.
    Shewale PM, Rao AV, Rao AP (2008) Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl Surf Sci 254(21):6902–6907.  https://doi.org/10.1016/j.apsusc.2008.04.109 CrossRefGoogle Scholar
  23. 23.
    Scherer GW (1988) Aging and drying of gels J Non-Cryst Solids 100(1–3):77–92.https://doi.org/10.1016/0022-3093(88)90008-7CrossRefGoogle Scholar
  24. 24.
    Sarawade PB, Kim J-K, Kim H-K, Kim H-T (2007) High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient-pressure. Appl Surf Sci 254(2):574–579.  https://doi.org/10.1016/j.apsusc.2007.06.063 CrossRefGoogle Scholar
  25. 25.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982CrossRefGoogle Scholar
  26. 26.
    Guinier A, Fournet G, Walker CB, Vineyard GH (1956) Small‐angle scattering of X‐rays. Phys Today 9(8):38–39.  https://doi.org/10.1063/1.3060069 CrossRefGoogle Scholar
  27. 27.
    Tai C, Peng J-F, Liu J-F, Jiang G-B, Zou H (2004) Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography. Anal Chim Acta 527(1):73–80.  https://doi.org/10.1016/j.aca.2004.08.019 CrossRefGoogle Scholar
  28. 28.
    Rao AV, Kalesh RR, Amalnerkar DP, Seth T (2003) Synthesis and characterization of hydrophobic TMES/TEOS based silica aerogels. J Porous Mater 10(1):23–29.  https://doi.org/10.1023/a:1024074231777 CrossRefGoogle Scholar
  29. 29.
    Gurav JL, Rao AV, Bangi UKH (2009) Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. J Alloy Compd 471(1):296–302.  https://doi.org/10.1016/j.jallcom.2008.03.076 CrossRefGoogle Scholar
  30. 30.
    Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J Mol Struct 919(1–3):140–145.  https://doi.org/10.1016/j.molstruc.2008.08.025 CrossRefGoogle Scholar
  31. 31.
    Zhang G, Dass A, Rawashdeh A-MM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids 350(Supplement C):152–164.  https://doi.org/10.1016/j.jnoncrysol.2004.06.041 CrossRefGoogle Scholar
  32. 32.
    Nadargi DY, Rao AV (2009) Methyltriethoxysilane: new precursor for synthesizing silica aerogels. J Alloy Compd 467(1):397–404.  https://doi.org/10.1016/j.jallcom.2007.12.019 CrossRefGoogle Scholar
  33. 33.
    Gopal NO, Narasimhulu KV, Rao JL (2004) EPR, optical, infrared and Raman spectral studies of actinolite mineral. Spectrochim Acta A Mol Biomol Spectrosc 60(11):2441–2448.  https://doi.org/10.1016/j.saa.2003.12.021 CrossRefGoogle Scholar
  34. 34.
    Socrates G (2001) Infrared and Raman characteristic group frequencies: table and charts. John Wiley and Sons, Ltd, Chichester, pp 1–347Google Scholar
  35. 35.
    Duran A, Serna C, Fornes V, Fernandez Navarro JM (1986) Structural considerations about SiO2 glasses prepared by sol-gel J Non-Cryst Solids 82(1–3):69–77.https://doi.org/10.1016/0022-3093(86)90112-2CrossRefGoogle Scholar
  36. 36.
    Chmel A, Mazurina EK, Shashkin VS (1990) Vibrational spectra and deffect structure of silica prepared by non-organic sol-gel process J Non-Cryst Solids 122(3):285–290.https://doi.org/10.1016/0022-3093(90)90993-VCrossRefGoogle Scholar
  37. 37.
    Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, UKGoogle Scholar
  38. 38.
    Günzler H, Gremlich H-U (2002) IR spectroscopy. An introduction. Wiley-VCH Verlag GmbH,Weinheim, 69469Google Scholar
  39. 39.
    Crist BV (1999) Handbooks of monochromatic XPS spectra. XPS International. Kawasaki, JapanGoogle Scholar
  40. 40.
    Moulder JF, Chastain J, King RC (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer, Eden PrairieGoogle Scholar
  41. 41.
    Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids 385:55–74.  https://doi.org/10.1016/j.jnoncrysol.2013.10.017 CrossRefGoogle Scholar
  42. 42.
    Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40(9):874–884.  https://doi.org/10.1021/ar600033s CrossRefGoogle Scholar
  43. 43.
    Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3(3):613–626.  https://doi.org/10.1021/am200007n CrossRefGoogle Scholar
  44. 44.
    Maleki H, Durães L, Portugal A (2014) Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater 197:116–129.  https://doi.org/10.1016/j.micromeso.2014.06.003 CrossRefGoogle Scholar
  45. 45.
    Suh DJ, Park T-J (1996) Sol−gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8(2):509–513.  https://doi.org/10.1021/cm950407g CrossRefGoogle Scholar
  46. 46.
    Gao YP, Sisk CN, Hope-Weeks LJ (2007) A sol–gel route to synthesize monolithic zinc oxide aerogels. Chem Mater 19(24):6007–6011.  https://doi.org/10.1021/cm0718419 CrossRefGoogle Scholar
  47. 47.
    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  48. 48.
    Mercera P, Van Ommen J, Doesburg E, Burggraaf A, Ross J (1990) Zirconia as a support for catalysts: evolution of the texture and structure on calcination in air. Appl Catal 57(1):127–148CrossRefGoogle Scholar
  49. 49.
    Mandelbrot BB (1983) The fractal geometry of nature, vol 173. Macmillan, USGoogle Scholar
  50. 50.
    Freltoft T, Kjems JK, Sinha SK (1986) Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering. Phys Rev B 33(1):269–275.  https://doi.org/10.1103/PhysRevB.33.269 CrossRefGoogle Scholar
  51. 51.
    Yano S, Ito T, Shinoda K, Ikake H, Hagiwara T, Sawaguchi T, Kurita K, Seno M (2005) Properties and microstructures of epoxy resin/TiO2 and SiO2 hybrids. Polym Int 54(2):354–361.  https://doi.org/10.1002/pi.1687 CrossRefGoogle Scholar
  52. 52.
    Bergmann A, Owen A (2004) Dielectric relaxation spectroscopy of poly[(R)-3-hydroxybutyrate] (PHB) during crystallization. Polym Int 53(7):863–868.  https://doi.org/10.1002/pi.1445 CrossRefGoogle Scholar
  53. 53.
    Hashimoto T, Saijo K, Harada M, Toshima N (1998) Small-angle X-ray scattering analysis of polymer-protected platinum, rhodium, and platinum/rhodium colloidal dispersions. J Chem Phys 109(13):5627–5638.  https://doi.org/10.1063/1.477181 CrossRefGoogle Scholar
  54. 54.
    Brumberger H, Association AC (1967) Small-angle X-ray scattering: proceedings of the conference held at Syracuse University, June 1965. In: Brumberger H (ed). Gordon and Breach, New YorkGoogle Scholar
  55. 55.
    Li Z-H, Gong Y-J, Wu D, Sun Y, Wang J, Liu Y, Dong B (2001) A negative deviation from Porod’s law in SAXS of organo-MSU-X. Microporous Mesoporous Mater 46(1):75–80CrossRefGoogle Scholar
  56. 56.
    Guinier A, Fournet G (1956) Small-angle scattering of X-rays. Acta Crystallogr 9(3):326–326.  https://doi.org/10.1107/S0365110X56003089 Google Scholar
  57. 57.
    Chen Z, Pan D, Li Z, Jiao Z, Wu M, Shek C-H, Wu CML, Lai JKL (2014) Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods. Chem Rev 114(15):7442–7486.  https://doi.org/10.1021/cr4007335 CrossRefGoogle Scholar
  58. 58.
    Rechberger F, Ilari G, Niederberger M (2014) Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths. Chem Commun (Camb) 50(86):13138–13141.  https://doi.org/10.1039/c4cc05648e CrossRefGoogle Scholar
  59. 59.
    Shanthi E, Dutta V, Banerjee A, Chopra K (1980) Electrical and optical properties of undoped and antimony‐doped tin oxide films. J Appl Phys 51(12):6243–6251CrossRefGoogle Scholar
  60. 60.
    Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C, Xie Y (2015) Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc 137(12):4119–4125.  https://doi.org/10.1021/ja5119495 CrossRefGoogle Scholar
  61. 61.
    Chen Y, Hong L, Xue HM, Han WQ, Wang LJ, Sun XY, Li JS (2010) Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition. J Electroanal Chem 648(2):119–127.  https://doi.org/10.1016/j.jelechem.2010.08.004 CrossRefGoogle Scholar
  62. 62.
    Montilla F, Morallón E, De Battisti A, Vázquez JL (2004) Preparation and characterization of antimony-doped tin dioxide electrodes. Part 1. Electrochemical characterization. J Phys Chem B 108(16):5036–5043.  https://doi.org/10.1021/jp037480b CrossRefGoogle Scholar
  63. 63.
    Ardizzone S, Fregonara G, Trasatti S (1990) “Inner” and “outer” active surface of RuO2 electrodes Electrochim Acta 35(1):263–267.https://doi.org/10.1016/0013-4686(90)85068-XCrossRefGoogle Scholar
  64. 64.
    Chang L, Li J, Duan X, Liu W (2015) Porous carbon derived from metal–organic framework (MOF) for capacitive deionization electrode Electrochim Acta 176:956–964.  https://doi.org/10.1016/j.electacta.2015.07.130 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations