Advertisement

Single-step synthesis of disiloxanetetraols

  • Hisayuki Endo
  • Nobuhiro Takeda
  • Masafumi Unno
Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 70 Downloads

Abstract

Disiloxanetetraols are very useful synthetic precursors for various siloxane compounds. In addition, they are effective starting materials in sol–gel chemistry for the fabrication of well-defined structures. We herein described a facile single-step synthesis of disiloxanetetraols ([RSi(OH)2]2O) with various substituents (R = Pr, i-Pr, i-Bu, cyclopentyl, hexyl, cyclohexyl, Ph) by hydrolytic condensation of trichlorosilanes, where the reaction was quenched at an early stage. [PrSi(OH)2]2O has the smallest substituents among the disiloxanetetraols reported so far. The results of X-ray crystallography of [C5H9Si(OH)2]2O showed a supramolecular sheet structure formed by intermolecular hydrogen bonding. We also found that disiloxanetetraols and cyclotetrasiloxanetetraols with isobutyl groups can be synthesized from isobutyltrichlorosilane by simply changing the quenching time and reaction temperature.

Keywords

Silanol Synthesis Monomer Well-defined materials Crystal structure Supramolecular aggregates 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lickiss PD (1995) Adv Inorg Chem 42:147–262CrossRefGoogle Scholar
  2. 2.
    Unno M, Alias SB, Arai M, Takada K, Tanaka R, Matsumoto H (1999) Appl Organomet Chem 13:303–310CrossRefGoogle Scholar
  3. 3.
    Unno M, Alias SB, Saito H, Matsumoto H (1996) Organometallics 15:2413–2414CrossRefGoogle Scholar
  4. 4.
    Unno M, Imai Y, Matsumoto H (2003) Silicon Chem 2:175–178CrossRefGoogle Scholar
  5. 5.
    Zhang ZX, Hao J, Xie P, Zhang X, Han CC, Zhang R (2008) Chem Mater 20:1322–1330CrossRefGoogle Scholar
  6. 6.
    Chandrasekhar V, Thirumoorthi R (2009) Inorg Chem 48:6236–6241CrossRefGoogle Scholar
  7. 7.
    Andrianov KA, Izmailov BA, Petukhova ND (1976) Zh Obshch Khim 46:599–601Google Scholar
  8. 8.
    Hurkes N, Bruhn C, Celaj F, Piestschnig R (2014) Organometallics 33:7299–7306CrossRefGoogle Scholar
  9. 9.
    Brown Jr JF, Vogt Jr LH (1965) J Am Chem Soc 87:4313–4137CrossRefGoogle Scholar
  10. 10.
    Brown Jr JF, Slusarczuk GM (1964) J Org Chem 29:2809–2810CrossRefGoogle Scholar
  11. 11.
    Seto I, Gunji T, Kumagai K, Arimitsu K, Abe Y (2003) Bull Chem Soc Jpn 76:1983–1987CrossRefGoogle Scholar
  12. 12.
    Suyama K, Nakatsuka T, Gunji T, Abe Y (2007) J Organomet Chem 692:2028–2035CrossRefGoogle Scholar
  13. 13.
    Unno M, Tanaka T, Matsumoto H (2003) J Organomet Chem 686:175–182CrossRefGoogle Scholar
  14. 14.
    Lickiss PD, Lister SA, Redhouse AD, Wisener PD (1991) Chem Commun 173–174Google Scholar
  15. 15.
    Pescarmona PP, Van der waal JC, Maschmeyer T (2004) Chem Eur J 10:1657–1665CrossRefGoogle Scholar
  16. 16.
    Kim JH, Han JS, Lim WC, Yoo BR (2007) J Ind Eng Chem 13:480Google Scholar
  17. 17.
    Toulokhonova I, Zhao R, Kozee M, West R (2001) Main Group Met Chem 24:737–744Google Scholar
  18. 18.
    Rulkens R, Coles MP, Tilley TD (2000) J Chem Soc Dalton Trans 627-628Google Scholar
  19. 19.
    Murugavel R, Bottcher P, Voigt A, Walawalker M. G, Roesky H. W, Parisini E, Teichert M, Noltemeyer M (1996) Chem Commun 2417-2418Google Scholar
  20. 20.
    Rickard CEF, Roper WR, Salter DM, Wright LJ (1992) J Am Chem Soc 114:9682–9683CrossRefGoogle Scholar
  21. 21.
    Ren Z, Sun D, Li H, Fu Q, Ma D, Zhang J, Yan S (2012) Chem Eur J 18:4115–4123CrossRefGoogle Scholar
  22. 22.
    Ren Z, Chen Z, Fu W, Zhang R, Shen F, Wang F, Ma Y, Yan S (2011) J Mater Chem 21:11306–11311CrossRefGoogle Scholar
  23. 23.
    Perruchas S, Desboeufs N, Maron S, Goff XFL, Fagues A, Garcia A, Gacoin T, Boilot JP (2012) Inorg Chem 51:794–798CrossRefGoogle Scholar
  24. 24.
    Yoshizawa M, Kusukawa T, Fujita M, Sakamoto S, Yamaguchi K (2001) J Am Chem Soc 123:10454–10459CrossRefGoogle Scholar
  25. 25.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) Sir97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32:115–119CrossRefGoogle Scholar
  26. 26.
    Sheldrick GM (1997) SHELXS-97 and SHELXL-97, Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen, GermanyGoogle Scholar
  27. 27.
    Yamamoto S, Yasuda N, Ueyama A, Adachi H, Ishikawa M (2004) Macromolecules 37:2775–2778CrossRefGoogle Scholar
  28. 28.
    Ito R, Kakihana Y, Kawakami Y (2009) Chem Lett 2009(38):364–365CrossRefGoogle Scholar
  29. 29.
    Unno M, Suto A, Takada K, Matsumoto H (2000) Bull Chem Soc Jpn 73:215-220Google Scholar
  30. 30.
    Feher FJ, Schwab JJ, Soulivong D, Ziller JW (1997) Main Group Chem 2:123–132CrossRefGoogle Scholar
  31. 31.
    Abe Y, Abe K, Watanabe M, Gunji T (1999) Chem Lett 28:259–260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, Faculty of Science and TechnologyGunma UniversityKiryuJapan

Personalised recommendations