Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 441–458 | Cite as

Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity

  • Abinaya Rajendran
  • Subha Balakrishnan
  • Ravichandran Kulandaivelu
  • Sankara Narayanan T. S. Nellaiappan
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications


Synthesis of unsubstituted and multi-element (magnesium, zinc and cobalt) substituted hydroxyapatites (HAP) with varying stoichiometric compositions and evaluation of their morphological and structural characteristics, degree of crystallinity, bioactivity, cytotoxicity and antibacterial activity are addressed. The morphological features are not altered much following the substitution of Mg2+, Zn2+, and Co2+ in the HAP lattice. Nevertheless, their substitution exerts a strong influence on the structural characteristics HAP. Rietveld refinement analysis of the X-ray diffraction patterns indicates a decrease in crystallinity and mineralogical composition of HAP phase, which is accompanied with an increase of β-tricalcium phosphate (β-TCP) phase along with Co3O4 phase. Broadening of the PO43− peaks and a decrease in intensity of the OH peak are observed by Fourier-transform infrared spectra. A decrease in intensity, broadening and a slight shift in Raman band (at 961 cm−1 for HAP) towards the lower side suggest the incorporation of Mg, Zn, and Co, disordering of the crystal structure of HAP and formation of β-TCP as additional phase besides HAP. The MgZnCo-HAP’s exhibits a better bioactivity, cell viability and anti-bacterial activity than the unsubstituted HAP. However, a decrease in cell viability and anti-bacterial activity are observed when the stoichiometric ratio of the substituent elements is relatively higher.


Hydroxyapatite β-tricalcium phosphate Multi-element substitution Bioactivity Antibacterial activity Cytotoxicity 



The authors thank the Director, National Centre for Nanoscience and Nanotechnology (NCNSNT) for extending characterization facilities such as SEM and EDS, Department of Nuclear Physics, University of Madras for providing X-ray diffraction facilities and Dr. C. Arulvasu, Department of Zoology, University of Madras for his kind help and valuable suggestions in performing cell growth studies. The authors also thank Dr. S. Kannan, Assistant professor, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, for his guidance and help in performing the Rietveld refinement analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4634_MOESM1_ESM.doc (3.4 mb)
Supplementary Information(DOC 3439 kb)


  1. 1.
    Mucalo M (ed) (2015) Hydroxyapatite (HAp) for biomedical applications, woodhead publishing series in biomaterials. Elsevier-Woodhead Publishers, CambridgeGoogle Scholar
  2. 2.
    Dorozhkin SV (2010) Bioceramics of calcium orthophosphates Biomaterials 31:1465–1485CrossRefGoogle Scholar
  3. 3.
    Dorozhkin SV (2012) Calcium orthophosphates: applications in Nature, Biology, and Medicine. Pan Stanford Publishing, SingaporeGoogle Scholar
  4. 4.
    Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRefGoogle Scholar
  5. 5.
    Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C (2013) Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater 59:1–46CrossRefGoogle Scholar
  6. 6.
    Feng W, Mu-sen L, Yu-peng L, Yong-xin Q (2005) A simple sol–gel technique for preparing hydroxyapatite nanopowders. Mater Lett 59:916–919CrossRefGoogle Scholar
  7. 7.
    Fathi MH, Hanifi A (2007) Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol–gel method. Mater Lett 61:3978–3983CrossRefGoogle Scholar
  8. 8.
    Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347CrossRefGoogle Scholar
  9. 9.
    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6:1882–1894CrossRefGoogle Scholar
  10. 10.
    Cacciotti I (2015) Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV (ed) Handbook of bioceramics and biocomposites. Springer International Publishing, Switzerland, p 1–68Google Scholar
  11. 11.
    Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRefGoogle Scholar
  12. 12.
    Percival M (1999) Bone health and osteoporosis. Appl Nutr Sci Rep 5:1–6Google Scholar
  13. 13.
    Moonga BS, Dempster DW (1995) Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res 10:453–457CrossRefGoogle Scholar
  14. 14.
    Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135CrossRefGoogle Scholar
  15. 15.
    Aina V, Lusvardi G, Annaz B, Gibson IR, Imrie FE, Malavasi G, Menabue L, Cerrato G, Martra G (2012) Magnesium and strontium-co-substituted hydroxyapatite: the effects of doped-ions on the structure and chemico-physical properties. J Mater Sci Mater Med 23:2867–2879CrossRefGoogle Scholar
  16. 16.
    Cox SC, Jamshidi P, Grover LM, Mallick KK (2014) Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C35:106–114CrossRefGoogle Scholar
  17. 17.
    Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N (1993) Magnesium influence on hydroxyapatite crystallization. J Inorg Biochem 49:69–78CrossRefGoogle Scholar
  18. 18.
    Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247CrossRefGoogle Scholar
  19. 19.
    Batra U, Kapoor S, Sharma S (2013) Influence of magnesium ion substitution on structural and thermal behavior of nanodimensional hydroxyapatite. J Mater Eng Perform 22:1798–1806CrossRefGoogle Scholar
  20. 20.
    Cacciotti I, Bianco A, Lombardi M, Montanaro L (2009) Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behaviour. J Eur Ceram Soc 29:2969–2978CrossRefGoogle Scholar
  21. 21.
    Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M (2013) Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci Mater Med 24:437–445CrossRefGoogle Scholar
  22. 22.
    Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58CrossRefGoogle Scholar
  23. 23.
    Guerra-Lopez JR, Echeverria GA, Guida JA, Vina R, Punte G (2015) Synthetic hydroxyapatite doped with Zn(II) studied by X-Ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65CrossRefGoogle Scholar
  24. 24.
    Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ (2009) Zinc incorporation into hydroxylapatite. Biomaterials 30:2864–2872CrossRefGoogle Scholar
  25. 25.
    Stanic′ V, Dimitrijevic′ S, Antic′-Stankovic′ J, Mitric′ M, Jokic′ B, Plec′aš I, Raičevic′ S (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256:6083–6089CrossRefGoogle Scholar
  26. 26.
    Miyaji F, Kono Y, Suyama Y (2005) Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull 40:209–220CrossRefGoogle Scholar
  27. 27.
    Ren F, Xin R, Ge X, Leng Y (2009) Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater 5:3141–3149CrossRefGoogle Scholar
  28. 28.
    Tank KP, Chudasama KS, Thaker VS, Joshi MJ (2013) Cobalt-doped nano hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J Nanopart Res 15:1644CrossRefGoogle Scholar
  29. 29.
    Stojanovic Z, Veselinovic L, Markovic S, Ignjatovic N, Uskokovic D (2009) Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite. Mater Manuf Process 24:1096–1103CrossRefGoogle Scholar
  30. 30.
    Kramer E, Itzkowitz E, Wei M (2014) Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram Int 40:13471–13480CrossRefGoogle Scholar
  31. 31.
    Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I (2016) Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater Sci Eng C58:648–658CrossRefGoogle Scholar
  32. 32.
    Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović Z, Uskoković V, Uskoković D (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci Mater Med 24:343–354CrossRefGoogle Scholar
  33. 33.
    Moreira MP, Soares GDA, Dentzer J, Anselme K, Sena LÁ, Kuznetsov A, Santos EA (2016) Synthesis of magnesium and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C61:736–743CrossRefGoogle Scholar
  34. 34.
    Iqbal N, Kadir MRA, Mahmood NH, Salim N, Froemming GRA, Balaji HR, Kamarul T (2014) Characterization, antibacterial and in vitro compatibility of zinc–silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40:4507–4513CrossRefGoogle Scholar
  35. 35.
    Lowry N, Han Y, Meenan BJ, Boyd AR (2017) Strontium and zinc co-substituted nanophase hydroxyapatite. Ceram Int 43:12070–12078CrossRefGoogle Scholar
  36. 36.
    Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR (2017) The deposition of strontium and zinc co-substituted hydroxyapatite coatings. J Mater Sci Mater Med 29:51CrossRefGoogle Scholar
  37. 37.
    Kulanthaivel S, Mishra U, Agarwal T, Giri S, Pal K, Pramanik K, Banerjee I (2015) Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceram Int 41:11323–11333CrossRefGoogle Scholar
  38. 38.
    Kolmas J, Jaklewicz A, Zima A, Buc′ko M, Paszkiewicz Z, Lis J, Lósarczyk S ́ (2011) Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: the effect on physicochemical properties J Mol Struct 987:40–50CrossRefGoogle Scholar
  39. 39.
    Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S, Girija EK (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135CrossRefGoogle Scholar
  40. 40.
    Gomes S, Vichery C, Descamps S, Martinez H, Kaur A, Jacobs A, Nedelec JM, Renaudin G (2018) Copper doping of calcium phosphate bioceramics from mechanism to the control of cytotoxicity. Acta Biommaterialia 65:465–474Google Scholar
  41. 41.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass ceramic A-W3. J Biomed Mater Res 24:721–734CrossRefGoogle Scholar
  42. 42.
    Esakkirajan M, Prabhu NM, Arulvasu C, Beulaja M, Manikandan R, Thiagarajan R, Govindarajan K, Prabhu D, Dinesh D, Babu G, Dhanasekaran G (2014) Anti-proliferative effect of a compound isolated from Cassia auriculate against human colon cancer cell line HCT 15. Spectrochim Acta Part A 120:462–466CrossRefGoogle Scholar
  43. 43.
    Elkabouss K, Kacimi M, Ziad M, Ammar S, Bozon-Veduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24CrossRefGoogle Scholar
  44. 44.
    Jarcho M, Bolen CH, Thomas MB, Bobick J, Kay JF, Doremus RH (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J Mater Sci 11:2027–2035CrossRefGoogle Scholar
  45. 45.
    Li MO, Xiao XF, Liu RF, Chen CY, Huang LZ (2008) Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J Mater Sci Mater Med 19:797–803CrossRefGoogle Scholar
  46. 46.
    Shepherd D, Best SM (2013) Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater 8:025003CrossRefGoogle Scholar
  47. 47.
    Lorenzo LMR, Regi MV (2000) Controlled crystallization of calcium phosphate apatites. Chem Mater 12:2460–2465CrossRefGoogle Scholar
  48. 48.
    Gomes S, Renaudin G, Jallot E, Nedelec JM (2009) Structural characterization and biological fluid interaction of sol-gel derived Mg substituted biphasic phosphate ceramic. App Mater Interface 1(2):505–513CrossRefGoogle Scholar
  49. 49.
    Gomes S, Karur A, Nedelec JM, Renaudin G (2014) X-Ray absorption spectroscopy shining (synchrotron) light onto the insertion of Zn2+ in calcium phosphate ceramics and its influence on their behavior under biological conditions. J Mater Chem 2:536–545CrossRefGoogle Scholar
  50. 50.
    Gomes S, Karur A, Greneche JM, Nedelec JM, Renaudin G (2017) Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomater 50:78–88CrossRefGoogle Scholar
  51. 51.
    Renaudin G, Gomes S, Nedelec JM (2017) First-row transition metal doping in calcium phosphate bioceramics: a detailed crystallographic study Mater 10(1):92CrossRefGoogle Scholar
  52. 52.
    Gomes S, Nedelec JM, Jallot E, Sheptyakov D, Renaudin G (2011) Unexpected mechanism of Zn2+ insertion in calcium phosphate bioceramics. Chem Mater 23:3072–3085CrossRefGoogle Scholar
  53. 53.
    Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRefGoogle Scholar
  54. 54.
    Yang Y, Perez-Amodio S, Barre‘ re-de Groot FYF, Everts V, van Blitterswijk CA, Habibovic P (2010) The effects of inorganic additives to calcium phosphate on in vitro behaviour of osteoblasts and osteoclasts. Biomaterials 31:2976–2989CrossRefGoogle Scholar
  55. 55.
    Zilm ME, Chen L, Sharma V, McDannald A, Jain M, Ramprasad R, Wei M (2016) Hydroxyapatite substituted by transition metals: experiment and theory. Phys Chem Chem Phys 18:16457–16465CrossRefGoogle Scholar
  56. 56.
    Penel G, Leroy G, Rey C, Bres E (1998) Micro Raman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRefGoogle Scholar
  57. 57.
    Awonusi A, Morris M, Tecklenburg M (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52CrossRefGoogle Scholar
  58. 58.
    Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238CrossRefGoogle Scholar
  59. 59.
    Darimont GL, Gilbert B, Cloots R, Non-destructive R (2003) evaluation of crystallinity and chemical composition by Raman spectroscopy in hydroxyapatite-coated implants. Mater Lett 58:71–73CrossRefGoogle Scholar
  60. 60.
    Aminzadeh A, Shahabi S, Walsh LJ (1999) Raman spectroscopic studies of CO2 laser-irradiated human dental enamel. Spectrochim Acta Part A 55:1303–1308CrossRefGoogle Scholar
  61. 61.
    Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26:4366–4373CrossRefGoogle Scholar
  62. 62.
    LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRefGoogle Scholar
  63. 63.
    Xue W, Liu X, Zheng X, Ding C (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74:553–561CrossRefGoogle Scholar
  64. 64.
    Ding Q, Zhang X, Huang Y, Yan Y, Pang X (2015) In vitro cytocompatibility and corrosion resistance of zinc-doped hydroxyapatite coatings on a titanium substrate. J Mater Sci 50:189–202CrossRefGoogle Scholar
  65. 65.
    Wang X, Ito A, Sogo Y, Li X, Oyane A (2010) Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomater 6:962–968CrossRefGoogle Scholar
  66. 66.
    Ito A, Ojima K, Naito H, Ichinose N, Tateishi T (2000) Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res 50:178–183CrossRefGoogle Scholar
  67. 67.
    Lu J, Wei J, Yan Y, Li H, Jia J, Wei S, Guo H, Xiao T, Liu C (2011) Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration. J Mater Sci Mater Med 22:607–615CrossRefGoogle Scholar
  68. 68.
    de Lima IR, Alves GG, Soriano CA, Campaneli AP, Gasparoto TH, Ramos Jr ES, de Sena LA, Rossi AM, Granjeiro JM (2011) Understanding the impact of divalent cation substitution on hydroxyapatite: An in vitro multiparametric study on biocompatibility. J Biomed Mater Res Part A 98A:351–358CrossRefGoogle Scholar
  69. 69.
    Tin OM, Gopalakrishna V, Samsuddin AR, Al-Salihi KA, Shamsuria O (2007) Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci 2:41–44Google Scholar
  70. 70.
    Sahithi K, Swetha M, Prabaharan M, Moorthi A, Saranya N, Ramasamy K, Srinivasan N, Partridge NC, Selvamurugan N (2010) Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications. J Biomed Nanotechnol 6:333–339CrossRefGoogle Scholar
  71. 71.
    Kolmas J, Groszyk E, Kwiatkowska-Rozycka D (2014) Substituted hydroxyapatites with antibacterial properties BioMed, Res Int 123:1–15Article ID 178CrossRefGoogle Scholar
  72. 72.
    Chung R, Hsieh M, Huang C, Perng L, Wen H, Chin T (2006) Antimicrobial effect and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B 76B:169–178CrossRefGoogle Scholar
  73. 73.
    Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRefGoogle Scholar
  74. 74.
    Udhayakumar G, Muthukumarasamy N, Velauthapillai D, Santhosh SB, Asokan V (2016) Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arabian J Chem.
  75. 75.
    Yang Y-C, Chen C-C, Wang J-B, Wang Y-C, Lin F-H (2017) Flame sprayed zinc doped hydroxyapatite coating with antibacterial and biocompatible properties. Ceram Int.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abinaya Rajendran
    • 1
  • Subha Balakrishnan
    • 1
  • Ravichandran Kulandaivelu
    • 1
  • Sankara Narayanan T. S. Nellaiappan
    • 2
  1. 1.Department of Analytical ChemistryUniversity of Madras Guindy CampusChennaiIndia
  2. 2.Department of Dental Biomaterials and Institute of Biodegradable Materials Institute of Oral Biosciences and Brain Korea 21 Plus projectSchool of Dentistry Chonbuk National UniversityJeonjuSouth Korea

Personalised recommendations