Advertisement

Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • 259 Downloads

Abstract

Pain is already known to cause delays in wound healing. Therefore, providing suitable therapeutic solutions for less painful wound healing should attract significantly more attention in the development of future novel wound care solutions. In this study, the nonsteroidal anti-inflammatory drug (NSAID) diclofenac sodium (DCS) and the local anesthetic lidocaine (LID) were combined in wound-dressing materials prepared using two different techniques. We compared the release of the mentioned drugs from a 3D bioprinted carboxymethyl cellulose (CMC)-based scaffold with their release from an electrospun CMC-based nano-mesh. As a well-defined and controlled drug release is of great importance for any material to be used in the clinics, we have put a lot of effort into a systematic evaluation of both prepared materials, using the two different techniques. For this purpose, we used different methods to characterize their physico–chemical, structural and morphological properties. Further, the influence of the respective preparation procedures were tested on the release profile and biocompatibility with human skin cells. Both prepared materials were proven biocompatible. We have also shown that the drug release of both incorporated drugs was affected significantly by the preparation method. The resulting release performances of the respective materials were shown to benefit the treatment of specific wounds. Finally, several advantageous properties could be achieved by combining both preparation techniques for the preparation of a single dressing.

Keywords

Wound dressing 3D bioprinting electrospinning controlled drug release diclofenac lidocaine 

Notes

Acknowledgements

We acknowledge the financial support from the Slovenian Research Agency for Research Core Funding nos. P2-0118 and P3-0036, and for the financial support through the Project no. Z2-8168.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2018_4630_MOESM1_ESM.docx (1.6 mb)
Supplementary Information(DOCX 1677 kb)

References

  1. 1.
    Zarchi K, Martinussen T, Jemec GB (2015) Wound healing and all‐cause mortality in 958 wound patients treated in home care. Wound Repair Regen 23(5):753–758CrossRefGoogle Scholar
  2. 2.
    Finkelstein E, Corso PS, Miller TR (2006) The incidence and economic burden of injuries in the United States. Oxford University Press, New York, USACrossRefGoogle Scholar
  3. 3.
    Guest JF, Ayoub N, McIlwraith T, Uchegbu I, Gerrish A, Weidlich D, Vowden K, Vowden P (2015) Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 5(12):e009283CrossRefGoogle Scholar
  4. 4.
    Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18CrossRefGoogle Scholar
  5. 5.
    Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S–38SCrossRefGoogle Scholar
  6. 6.
    Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K (2015) Functional wound dressing materials with highly tunable drug release properties. RSC Adv 5(95):77873–77884CrossRefGoogle Scholar
  7. 7.
    Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol 74(4):607–625CrossRefGoogle Scholar
  8. 8.
    Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio‐printing applications. J Biomed Mater Res A 101(1):272–284CrossRefGoogle Scholar
  9. 9.
    Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39(10):704Google Scholar
  10. 10.
    Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162CrossRefGoogle Scholar
  11. 11.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotech 32(8):773–785CrossRefGoogle Scholar
  12. 12.
    Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33(6):1782–1790CrossRefGoogle Scholar
  13. 13.
    Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2015) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Techn 79(3):475–486CrossRefGoogle Scholar
  14. 14.
    Häkkinen L, Koivisto L, Heino J, Larjava H (2015) Chapter 50 - Cell and molecular biology of wound healing. In: Ramalingam AVSS (ed) Stem cell biology and tissue engineering in dental sciences. Academic Press, Boston, p 669–690CrossRefGoogle Scholar
  15. 15.
    Breitkreutz D, Mirancea N, Nischt R (2009) Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol 132(1):1–10CrossRefGoogle Scholar
  16. 16.
    Hay ED (2013) Cell biology of extracellular matrix. Springer Science & Business Media, New YorkGoogle Scholar
  17. 17.
    Maver T, Kurečič M, Smrke DM, Kleinschek KS, Maver U (2016) Electrospun nanofibrous CMC/PEO as a part of an effective pain-relieving wound dressing. J Sol-Gel Sci Techn 79(3):475–486CrossRefGoogle Scholar
  18. 18.
    He T, Wang J, Huang P, Zeng B, Li H, Cao Q, Zhang S, Luo Z, Deng DY, Zhang H, Zhou W (2015) Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf B, Biointerfaces 130:278–286CrossRefGoogle Scholar
  19. 19.
    Choi JS, Kim HS, Yoo HS (2015) Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 5(2):137–145CrossRefGoogle Scholar
  20. 20.
    Arslan A, Simsek M, Aldemir SD, Kazaroglu NM, Gumusderelioglu M (2014) Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process. J Biomater Sci Polym Ed 25(10):999–1012CrossRefGoogle Scholar
  21. 21.
    Paaver U, Tamm I, Laidmae I, Lust A, Kirsimae K, Veski P, Kogermann K, Heinamaki J (2014) Soluplus graft copolymer: potential novel carrier polymer in electrospinning of nanofibrous drug delivery systems for wound therapy. BioMed Res Int 2014:789765CrossRefGoogle Scholar
  22. 22.
    Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92CrossRefGoogle Scholar
  23. 23.
    Dubsky M, Kubinova S, Sirc J, Voska L, Zajicek R, Zajicova A, Lesny P, Jirkovska A, Michalek J, Munzarova M, Holan V, Sykova E (2012) Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med 23(4):931–941CrossRefGoogle Scholar
  24. 24.
    Hong Y, Li Y, Zhuang X, Chen X, Jing X (2009) Electrospinning of multicomponent ultrathin fibrous nonwovens for semi-occlusive wound dressings. J Biomed Mater Res A 89(2):345–354CrossRefGoogle Scholar
  25. 25.
    Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 27(8):1452–1461CrossRefGoogle Scholar
  26. 26.
    Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–792CrossRefGoogle Scholar
  27. 27.
    Salalha W, Kuhn J, Dror Y, Zussman E (2006) Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 17(18):4675CrossRefGoogle Scholar
  28. 28.
    Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, Pillay V (2014) A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 103(8):2211–2230CrossRefGoogle Scholar
  29. 29.
    Dornseifer U, Lonic D, Gerstung TI, Herter F, Fichter AM, Holm C, Schuster T, Ninkovic M (2011) The ideal split-thickness skin graft donor-site dressing: a clinical comparative trial of a modified polyurethane dressing and aquacel. Plast Reconstr Surg 128(4):918–924CrossRefGoogle Scholar
  30. 30.
    Ryssel H, Germann G, Riedel K, Reichenberger M, Hellmich S, Kloeters O (2010) Suprathel-acetic acid matrix versus acticoat and aquacel as an antiseptic dressing: an in vitro study. Ann Plast Surg 65(4):391–395CrossRefGoogle Scholar
  31. 31.
    Tickle J (2012) Effective management of exudate with AQUACEL extra. Br J Community Nurs Suppl S38:S40–36Google Scholar
  32. 32.
    Petrulyte S (2008) Advanced textile materials and biopolymers in wound management. Dan Med Bull 55(1):72–77Google Scholar
  33. 33.
    O’Donoghue JM, O’Sullivan ST, Beausang ES, Panchal JI, O’Shaughnessy M, O’Connor TP (1997) Calcium alginate dressings promote healing of split skin graft donor sites. Acta Chir Plast 39(2):53–55Google Scholar
  34. 34.
    Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136CrossRefGoogle Scholar
  35. 35.
    Manizate F, Fuller A, Gendics C, Lantis 2nd JC (2012) A prospective, single-center, nonblinded, comparative, postmarket clinical evaluation of a bovine-derived collagen with ionic silver dressing versus a carboxymethylcellulose and ionic silver dressing for the reduction of bioburden in variable-etiology, bilateral lower-extremity wounds. Adv Skin Wound Care 25(5):220–225CrossRefGoogle Scholar
  36. 36.
    Lee JH, Lim SJ, Oh DH, Ku SK, Li DX, Yong CS, Choi HG (2010) Wound healing evaluation of sodium fucidate-loaded polyvinylalcohol/sodium carboxymethylcellulose-based wound dressing. Arch pharmacal Res 33(7):1083–1089CrossRefGoogle Scholar
  37. 37.
    Broumand A, Emam-Djomeh Z, Khodaiyan F, Davoodi D, Mirzakhanlouei S (2014) Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. Int J Biol Macromol 66:221–228CrossRefGoogle Scholar
  38. 38.
    Solowiej K, Upton D (2010) Managing stress and pain to prevent patient discomfort, distress and delayed wound healing. Nurs Times 106(16):21–23Google Scholar
  39. 39.
    Fogh K, Andersen MB, Bischoff-Mikkelsen M, Bause R, Zutt M, Schilling S, Schmutz J-L, Borbujo J, Jimenez JA, Cartier H, Jørgensen B (2012) Clinically relevant pain relief with an ibuprofen-releasing foam dressing: results from a randomized, controlled, double-blind clinical trial in exuding, painful venous leg ulcers. Wound Repair Regen 20(6):815–821CrossRefGoogle Scholar
  40. 40.
    Hua Y, Qiu R, Yao W-y, Zhang Q, Chen X-l (2015) The effect of virtual reality distraction on pain relief during dressing changes in children with chronic wounds on lower limbs. Pain Manag Nurs 16(5):685–691CrossRefGoogle Scholar
  41. 41.
    Price P, Fogh K, Glynn C, Krasner DL, Osterbrink J, Sibbald RG (2007) Why combine a foam dressing with ibuprofen for wound pain and moist wound healing? Int Wound J 4(Suppl 1):1–3CrossRefGoogle Scholar
  42. 42.
    Wright KD, Shirey J (2003) A pain management protocol for wound care. Ostomy Wound Manag 49(5):18–20Google Scholar
  43. 43.
    Dreifke MB, Jayasuriya AA, Jayasuriya AC (2015) Current wound healing procedures and potential care. Mater Sci Eng: C 48(0):651–662CrossRefGoogle Scholar
  44. 44.
    Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinforma 18(1):529CrossRefGoogle Scholar
  45. 45.
    Horvat G, Xhanari K, Finšgar M, Gradišnik L, Maver U, Knez Ž, Novak Z (2017) Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohyd Polym 166:365–376CrossRefGoogle Scholar
  46. 46.
    Ferrari M, Fornasiero MC, Isetta AM (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131(2):165–172CrossRefGoogle Scholar
  47. 47.
    van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174(1–2):311–320CrossRefGoogle Scholar
  48. 48.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63CrossRefGoogle Scholar
  49. 49.
    Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492CrossRefGoogle Scholar
  50. 50.
    Baumann B, Jungst T, Stichler S, Feineis S, Wiltschka O, Kuhlmann M, Linden M, Groll J (2017) Control of nanoparticle release kinetics from 3D printed hydrogel scaffolds. Angew Chem Int Ed Engl 56(16):4623–4628CrossRefGoogle Scholar
  51. 51.
    Zhu F, Cheng L, Wang ZJ, Hong W, Wu ZL, Yin J, Qian J, Zheng Q (2017) 3D-printed ultratough hydrogel structures with Titin-like domains. ACS Appl Mater Interfaces 9(13):11363–11367CrossRefGoogle Scholar
  52. 52.
    Placone JK, Navarro J, Laslo GW, Lerman MJ, Gabard AR, Herendeen GJ, Falco EE, Tomblyn S, Burnett L, Fisher JP (2017) Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng 45(1):237–248CrossRefGoogle Scholar
  53. 53.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRefGoogle Scholar
  54. 54.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefGoogle Scholar
  55. 55.
    Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041CrossRefGoogle Scholar
  56. 56.
    Giron S, Lode A, Gelinsky M (2017) In situ functionalization of scaffolds during extrusion-based 3D plotting using a piezoelectric nanoliter pipette. J 3D Print Med 1(1):25–29CrossRefGoogle Scholar
  57. 57.
    Yan J, Huang Y, Chrisey DB (2012) Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 5(1):015002CrossRefGoogle Scholar
  58. 58.
    Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256CrossRefGoogle Scholar
  59. 59.
    Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, Kleinschek KS (2017) Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm 529(1–2):576–588CrossRefGoogle Scholar
  60. 60.
    Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, Stana-Kleinschek K (2015) Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose 22(1):749–761CrossRefGoogle Scholar
  61. 61.
    Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA (2016) Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine 11(6):715–737CrossRefGoogle Scholar
  62. 62.
    Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10(9):715–738CrossRefGoogle Scholar
  63. 63.
    Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30CrossRefGoogle Scholar
  64. 64.
    Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5):504–520CrossRefGoogle Scholar
  65. 65.
    Alamein MA, Liu Q, Stephens S, Skabo S, Warnke F, Bourke R, Heiner P, Warnke PH (2013) Nanospiderwebs: artificial 3D extracellular matrix from nanofibers by novel clinical grade electrospinning for stem cell delivery. Adv Healthc Mater 2(5):702–717CrossRefGoogle Scholar
  66. 66.
    Krishnappa RVN, Desai K, Sung C (2003) Morphological study of electrospun polycarbonates as a function of the solvent and processing voltage. J Mater Sci 38(11):2357–2365CrossRefGoogle Scholar
  67. 67.
    Maver U, Bele M, Jamnik J, Gaberšček M, Planinšek O (2013) A fast and simple method for preparation of calcium carbonate-drug composites for fast drug release. Mater Res Bull 48(1):137–145CrossRefGoogle Scholar
  68. 68.
    Žužek Rožman K, Pečko D, Šturm S, Maver U, Nadrah P, Bele M, Kobe S (2012) Electrochemical synthesis and characterization of Fe 70Pd 30 nanotubes for drug-delivery applications. Mater Chem Phys 133(1):218–224CrossRefGoogle Scholar
  69. 69.
    Finšgar M, Uzunalić AP, Stergar J, Gradišnik L, Maver U (2016) Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci Rep 6:26653CrossRefGoogle Scholar
  70. 70.
    Canton I, Cole DM, Kemp EH, Watson PF, Chunthapong J, Ryan AJ, MacNeil S, Haycock JW (2010) Development of a 3D human in vitro skin co-culture model for detecting irritants in real-time. Biotechnol Bioeng 106(5):794–803CrossRefGoogle Scholar
  71. 71.
    Pasqui D, Rossi A, Di Cintio F, Barbucci R (2007) Functionalized titanium oxide surfaces with phosphated carboxymethyl cellulose: characterization and bonelike cell behavior. Biomacromolecules 8(12):3965–3972CrossRefGoogle Scholar
  72. 72.
    Ko IK, Kato K, Iwata H (2005) A thin carboxymethyl cellulose culture substrate for the cellulase-induced harvesting of an endothelial cell sheet. J Biomater Sci Polym Ed 16(10):1277–1291CrossRefGoogle Scholar
  73. 73.
    Mizrahi A, Moore GE (1971) Role of sodium carboxymethyl cellulose and hydroxyethyl starch in hematopoietic cell line cultures. Appl Microbiol 21(4):754–757Google Scholar
  74. 74.
    Baker WA, Chang T, Hancock RR, Walczak WJ (2009) Coated cell culture surfaces and methods for producing the same. Google Patents, US20090227027A1Google Scholar
  75. 75.
    Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24):4385–4415CrossRefGoogle Scholar
  76. 76.
    Puppi D, Chiellini F, Piras A, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Progress Polym Sci 35(4):403–440CrossRefGoogle Scholar
  77. 77.
    Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of PolymersUniversity of MariborMariborSlovenia
  2. 2.University Medical Centre LjubljanaLjubljanaSlovenia
  3. 3.Graz University of TechnologyGrazAustria
  4. 4.Faculty of Medicine, Institute of Biomedical Sciences and Institute for Palliative Medicine and CareUniversity of MariborMariborSlovenia
  5. 5.Department of Pharmacology, Faculty of MedicineUniversity of MariborMariborSlovenia

Personalised recommendations