Journal of Sol-Gel Science and Technology

, Volume 86, Issue 2, pp 255–265 | Cite as

Effect of Fe and Co doping on ethanol sensing property of powder-based ZnO nanostructures prepared by sol–gel method

  • A. Bagheri Khatibani
  • M. Abbasi
Original Paper: Characterization methods of sol-gel and hybrid materials


Iron and cobalt doped zinc oxide were prepared by the sol–gel method. The doping concentration was varied between 5 and 10 wt.%. Structural and morphological features of the samples were investigated comparatively by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). They were also placed in an electric circuit and their sensing characteristics toward ethanol vapors were studied. It was found that, the gas response was impressed by doping. The optimal operating temperature, dynamic response, sensitivity and response and recovery times of the samples have been measured. The operating temperature and the time of response and recovery of the sensor were generally reduced after doping. According to our results, by considering the time of rising/ falling, the doped samples have a relatively better status than pure zinc oxide sample and in particular, the sample with 10% cobalt doped (ZC10) had a competitive attitude compared to pure zinc oxide due to significant reduction in response/recovery times.


Metal oxide gas sensor Sol–gel method Doped ZnO Ethanol sensing 



This project was supported by the Islamic Azad University, Lahijan Branch, Iran and performed in the Nano Research Lab. The authors would like to appreciate the financial support of the office of the vice chancellor for research and technology of the Islamic Azad University, Lahijan Branch to this project. We are also grateful to Dr. Siamak Golshahi for his useful and valuable guidance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no confilct of interest.


  1. 1.
    Wang W, Chai H, Wang X, Hu X, Li X (2015) Appl Surf Sci 341:43–47CrossRefGoogle Scholar
  2. 2.
    Diao K, Zhou M, Zhang J, Tang Y, Wang S, Cui X (2015) Sens Actuators, B 219:30–37CrossRefGoogle Scholar
  3. 3.
    Muthukrishnan K, Vanaraja M, Boomadevi S, Karn RK, Rayappan JBB, Singh V, Pandiyan K (2015) J Mater Sci Mater Electron 26(7):5135–5139CrossRefGoogle Scholar
  4. 4.
    Muthukrishnan K, Vanaraja M, Boomadevi S, Karn RK, Singh V, Singh PK, Pandiyan K (2016) J Alloy Compd 673:138–143CrossRefGoogle Scholar
  5. 5.
    Ruchika AK (2015) Int J Appl Sci Eng Res 4(4):427–436Google Scholar
  6. 6.
    Navale YH, Navale ST, Ramgir NS, Stadler FJ, Gupta SK, Aswal DK, Patil VB (2017) Sens Actuators, B 251:551–563CrossRefGoogle Scholar
  7. 7.
    Korotcenkov G, Cho BK (2017) Sens Actuators B 244:182–210CrossRefGoogle Scholar
  8. 8.
    Wei A, Pan L, Huang W (2011) Mater Sci Eng B 176:1409–1421CrossRefGoogle Scholar
  9. 9.
    Sivalingam D, Gopalakrishnan JB, Rayappan JBB (2012) Sens Actuators B 166–167:624–631CrossRefGoogle Scholar
  10. 10.
    Shimpi NG, Jain S, Karmakar N, Shah A, Kothari DC, Mishra S (2016) Appl Surf Sci 390:17–24CrossRefGoogle Scholar
  11. 11.
    Maldonado A, Tirado-Guerra S, Cázares JM, de la M, Olvera L (2010) Thin Solid Films 518:1815–1820CrossRefGoogle Scholar
  12. 12.
    Alamdari S, Jafar Tafreshi M, Sasani Ghamsari M (2017) Mater Lett 197:94–97CrossRefGoogle Scholar
  13. 13.
    Ju D, Xu H, Zhang J, Guo J, Cao B (2014) Sens Actuators, B 201:444–451CrossRefGoogle Scholar
  14. 14.
    Ahmadi Daryakenari A, Ahmadi Daryakenari M, Bahari Y, Omivar H (2012) Int Sch Res Netw 2012:1–6Google Scholar
  15. 15.
    Musat V, Rego AM, Monteiro R, Fortunato E (2008) Thin Solid Films 516:1512–1515CrossRefGoogle Scholar
  16. 16.
    Paulraj R, Shankar P, Mani GK, Nallathambi L, Rayappan JBB (2017) J Mater Sci Mater Electron 28(15):10799–10805CrossRefGoogle Scholar
  17. 17.
    Dimitrov DT, Nikolaev NK, Papazova KI, Krasteva LK, Pronin IA, Averin IA, Bojinova AS, Georgieva AT, Yakushova ND, Peshkova TV, Karmanov AA, Kaneva NV, Moshnikov VA (2017) Appl Surf Sci 392:95–108CrossRefGoogle Scholar
  18. 18.
    Tarwal NL, Patil AR, Harale NS, Rajgure AV, Suryavanshi SS, Bae WR, Patil PS, Kim JH, Jang JH (2014) J Alloy Compd 598:282–288CrossRefGoogle Scholar
  19. 19.
    Zou AL, Hu LZ, Qiu Y, Cao GY, Yu JJ, Wang LN, Zhang HQ, Yin B, Xu LL (2015) J Mater Sci Mater Electron 26(7):4908–4912CrossRefGoogle Scholar
  20. 20.
    Dhahri R, Hjiri M, Mir LE, Bonavita A, Iannazzo D, Leonardi SG, Neri G (2015) Appl Surf Sci 355:1321–1326CrossRefGoogle Scholar
  21. 21.
    Ge C, Xie C, Cai S (2007) Mater Sci Eng B 137:53–58CrossRefGoogle Scholar
  22. 22.
    Mani GK, Rayappan JBB (2014) Appl Surf Sci 311:405–412CrossRefGoogle Scholar
  23. 23.
    Emphasis K, Vequizo R, Odarve MK, Gambe J, Alguno A (2015) IOP Conf Ser Mater Sci Eng 79:012008CrossRefGoogle Scholar
  24. 24.
    Liao WZ, Dai CL, Yang MZ (2013) Sensors 13:12760–12770CrossRefGoogle Scholar
  25. 25.
    Magar PP, Kadam VS, Mulla SF, Shaikh AV, Pathan HM (2016) J Mater Sci Mater Electron 27(12):12287–12290CrossRefGoogle Scholar
  26. 26.
    Della Gaspera E, Guglielmi M, Perotto G, Agnoli S, Granozzi G, Post ML, Martucci A (2012) Sens Actuators, B 161:675–683CrossRefGoogle Scholar
  27. 27.
    Wei S, Wang S, Zhang Y, Zhou M (2014) Sens Actuators B 192:480–487CrossRefGoogle Scholar
  28. 28.
    Bilecka I, Luo L, Djerdj I, Rossell MD, Jagodic M, Jaglicic Z, Masubuchi Y, Kikkawa S, Niederberger M (2011) J Phys Chem C 115:1484–1495CrossRefGoogle Scholar
  29. 29.
    Abdolahzadeh Ziabari A, Bagheri Khatibani A (2017) Chin J Phys 55:876–885CrossRefGoogle Scholar
  30. 30.
    Bidier SA, Hashim MR, Bououdina M (2017) J Mater Sci Mater Electron 28(15):11178–11185CrossRefGoogle Scholar
  31. 31.
    Nandi A, Majumder R, Nag P, Datta SK, Saha H, Majumdar S (2017) J Mater Sci Mater Electron 28:10885–10892CrossRefGoogle Scholar
  32. 32.
    Kumar Y, Sahai A, Olive-Méndez SF, Goswami N, Agarwa V (2016) Ceram Int 42:5184–5194CrossRefGoogle Scholar
  33. 33.
    Shafique MA, Shah SA, Nafees M, Rasheed K, Ahmad R (2012) Int Nano Lett 2:31CrossRefGoogle Scholar
  34. 34.
    Pandey BK, Shahi AK, Gopal R (2015) Appl Surf Sci 347:461–470CrossRefGoogle Scholar
  35. 35.
    Huang X, Schmucker A, Dyke J, Hall SM, Retrum J, Stein B, Remmes N, Baxter DV, Dragnea B, Bronstein LM (2009) J Mater Chem 19:4231–4239CrossRefGoogle Scholar
  36. 36.
    Majeed MI, Guo J, Yan W, Tan B (2016) Polymers 8:392–407CrossRefGoogle Scholar
  37. 37.
    Gao H, Wang G, Yang M, Tan L, Yu J (2012) Nanotechnology 23(1):8015607CrossRefGoogle Scholar
  38. 38.
    Zhang C, Geng X, Li J, Luo Y, Lu P (2017) Sens Actuators B 248:886–893CrossRefGoogle Scholar
  39. 39.
    Bagheri Khatibani A, Rozati SM (2016) Bull Mater Sci 39:97–107CrossRefGoogle Scholar
  40. 40.
    Bagheri Khatibani A, Abbasi M (2015) J Mater Sci Mater Electron 26:5052–5059CrossRefGoogle Scholar
  41. 41.
    Yan SH, Ma SY, Li WQ, Xu XL, Cheng L, Song HS, Liang XY (2015) Sens Actuators B 221:88–95CrossRefGoogle Scholar
  42. 42.
    Liu J, Wang T, Wang B, Sun P, Yang Q, Liang X, Song H, Lu G (2017) Sens Actuators B 245:551–559CrossRefGoogle Scholar
  43. 43.
    Sahay PP, Nath RK (2008) Sens Actuators B 134:654–659CrossRefGoogle Scholar
  44. 44.
    Bagheri Khatibani A, Abbasi M, Rozati SM (2016) Acta Phys Pol A 129(6):1245–1251CrossRefGoogle Scholar
  45. 45.
    Rai P, Raj S, Ko KJ, Park KK, Yu YT (2013) Sens Actuators B 178:107–112CrossRefGoogle Scholar
  46. 46.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Sensors 10(3):2088–2106CrossRefGoogle Scholar
  47. 47.
    Zheng G, Zhu P, Sun L, Jiang J, Liu J, Wang X, Li W (2016) AIP Adv 6:125306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nano Research Lab, Lahijan BranchIslamic Azad UniversityLahijanIran

Personalised recommendations