Journal of Sol-Gel Science and Technology

, Volume 86, Issue 3, pp 690–698 | Cite as

Study of precursor-solution purity for high-quality yttrium–barium–copper-oxide superconducting thin film

  • S. S. WangEmail author
  • Z. L. Zhang
  • M. H. Li
  • M. J. Li
  • L. K. Gao
  • B. Wei
  • B. S. Cao
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications


Trifluoroacetic acid-metal-organic deposition (TFA-MOD) is an effective method to prepare high-quality yttrium–barium–copper oxide (YBCO) superconducting thin films with a large area. Chemical reactions and purification are the keys to the preparation of the precursor solution in the TFA-MOD method. In this study, the process of preparing the precursor solution was examined by the infrared spectra systematically, and each infrared spectrum was determined by Fourier-transform-infrared spectroscopy (FTIR) to judge the possible side reactions. The results show that organic functional groups have no side effects at room temperature (20 ± 2°C). And the purification process can remove excess water, acid, and so on. The purity of the precursor solution would increase with distillation. When the relative height ratio of CF3− and the C−OH absorption peak in the spectra of solution 3, which has been purified three times, reaches 0.664, and the relative ratio of C−F and the C−OH absorption peak is 0.418, a YBCO thin film can be obtained with a perfectly uniform surface. Its transition-onset temperature is approximately 90.9 K, the value of critical current density (Jc) is 2.32 mA/cm2 (77 K, 0 T), and the growth of the superconducting film is strongly oriented to the c-axis. In addition, it was found that distillation removes excess water, acetic acid, and other small molecules, and determines the quality of YBCO thin films. For this performance, a superconducting film has been successfully applied to filter the fabrication. Therefore, this method is essentially an effective method to study the content of impurities in the precursor solution in order to form a superconducting film with good quality.

The picture above is a summary of the article charts, divided into four major steps. In this study, the process of preparing the precursor solution was examined by infrared spectra systematically, and each infrared spectrum was determined by Fourier transform infrared spectroscopy (FTIR) to judge possible side reactions. And the microstructure and superconductivity of thin film have been characterized by XRD, SEM, CRYO SCAN equipment and four-probe method. Finally, this performance of superconducting film haves been successfully applied to the filter fabrication through this research method.


YBCO thin film Precursor solution FTIR High-temperature superconductor Filter fabrication 



This work was supported by the National Natural Science Foundation of China under contract no. 61171003, the National High Technology Research and Development Program of China (“863 program”) under contract no. 2014AA032703, the innovation funds of the Chinese Academy of Space Technology, and the Aviation Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang SS, Wu K, Shi K, Liu Q, Han Z (2004) Phys C 407:95–102CrossRefGoogle Scholar
  2. 2.
    Wang S, Chen S, Fu H, Shi K, Liu L, Liu Q, Han Z (2005) IEEE Trans Appl Supercond 15:3001–3004CrossRefGoogle Scholar
  3. 3.
    Chen S, Sun Z, Shi K, Wang SS, Meng J, Liu Q, Han Z (2004) Phys C 412:871–876CrossRefGoogle Scholar
  4. 4.
    Augieri A, Vannozzi A, Mancini R, Angrisani AA, Fabbri F, Galluzzi V, Rufoloni A, Rizzo F, Mancini A, Celentano G, Colantoni I, Davoli I, Pompeo N, Sotgiu G, Silva E (2013) IEEE Trans Appl Supercond 23:6600505CrossRefGoogle Scholar
  5. 5.
    Zalamova K, Romà N, Pomar A, Morlens S, Puig T, Gzquez J, Carrillo AE, Sandiumenge F, Ricart S, Mestres N, Obradors X (2006) Chem Mater 18:5897–5906CrossRefGoogle Scholar
  6. 6.
    Llords A, Zalamova K, Ricart S, Palau A, Pomar A, Puig T, Hardy A, Van Bael MK, Obradors X (2010) Chem Mater 22:1686–1694CrossRefGoogle Scholar
  7. 7.
    Sun ZY, Wang SS, Wu K, Liu Q, Han Z (2004) Phys C 412:1331–1336CrossRefGoogle Scholar
  8. 8.
    Wang SS, Qiu L, Wang L, Du P, Chen S, Han Z (2005) Supercond Sci Technol 18:1271–1274CrossRefGoogle Scholar
  9. 9.
    Gupta A, Jagannathan R, Cooper EI, Giess EA, Landman JI, Hussey BW (1988) Appl Phys Lett 52:2077–2079CrossRefGoogle Scholar
  10. 10.
    Teranishi R, Fuji H, Honjo T, Nakamura Y, Izumi T, Shiohara Y, Shibata J, Yamamoto T, Ikuhara Y, Yoshimura M (2002) Phys C 378:1033–1038CrossRefGoogle Scholar
  11. 11.
    Araki T, Yamagiwa K, Hirabayashi I, Suzuki K, Tanaka S (2001) Supercond Sci Technol 14:L21–L24CrossRefGoogle Scholar
  12. 12.
    Roma N, Morlens S, Ricart S (2006) Supercond Sci Technol 6:L1742-6596.Google Scholar
  13. 13.
    Koster G, Huh J-Uk, Hammond RH, Beasley MR (2007) Appl Phys Lett 90:261917CrossRefGoogle Scholar
  14. 14.
    Zhao YE, Cai CY, Luo YY, He ZH (2004) J Supercond Nov Magn 17:383–387CrossRefGoogle Scholar
  15. 15.
    Su JH, Joshi PP, Chintamaneni V, Mukhopadhyay SM (2005) Supercond Sci Technol 18:1496–1501CrossRefGoogle Scholar
  16. 16.
    Shude D, Ran Z, Jiehui L et al. (2014) Plastics Sci Technol 42:45Google Scholar
  17. 17.
    Yin Z, Wei B, Cao B, Guo X, Zhang X, He W, He S, Gao L, Zhu M, Gao B (2008) Chin J Low Temp Phys 3:28Google Scholar
  18. 18.
    Weng S, Xu Y (2010) Fourier transform infrared spectroscopy. Chemical Industry Press, Beijing, p 155Google Scholar
  19. 19.
    Zongming W, Xinxiang H, Dianqing S (1990) Petroleum Industry Press, Beijing, p 191.Google Scholar
  20. 20.
    Deyan S (1982) Application of Infrared Spectroscopy in Polymer Research, Science Press, Beijing, p 149.Google Scholar
  21. 21.
    Schlipf DM, Zhou S, Khan MA, Rankin SE, Knutson BL (2017) Effects of Pore Size and Tethering on the Diffusivity of Lipids Confined in Mesoporous Silica Adv Mater Interfaces 4:1601103CrossRefGoogle Scholar
  22. 22.
    Zhuli Zhang, Sansheng Wang, Yu Zhang (2017) Chin J Low Temp Phys 39:2Google Scholar
  23. 23.
    Vermeir P, Feys J, Schaubroeck J, Verbeken K, Bäcker M, Van Driessche I (2012) Mater Chem Phys 133:998–1002CrossRefGoogle Scholar
  24. 24.
    Vermeir P, Feys J, Schaubroeck J, Verbeken K, Lommens P, Van Driessche I (2012) Mater Res Bull 47:4376–4382CrossRefGoogle Scholar
  25. 25.
    Tang X, Zhao Y, Grivel J-C (2013) Ceram Int 39:7735–7741CrossRefGoogle Scholar
  26. 26.
    Xumei C, Bowan T, Jiajun C, Yanrong L, Xingzhao L (2005) Chin J Low Temp Phys 27:4Google Scholar
  27. 27.
    Puig T, Gonzalez JC, Pomar A, Mestres N, Castano O, Coll M, Gazquez J, Sandiumenge F, Pinol S, Obradors X (2005) Supercond Sci Technol 18:1141–1150CrossRefGoogle Scholar
  28. 28.
    Cui XM, Tao BW, Xiong J, Liu XZ, Zhu J, Li YR (2005) Phys C 147.Google Scholar
  29. 29.
    Wang Xiang, Wei Bin, Lu Xi-Long, Guo Xu-Bo, Cao Bi-Song (2017) Chin Phys B 26:128501CrossRefGoogle Scholar
  30. 30.
    Gong Liming, Bin Wei, Bisong Cao (2013) Microw OPTICAL Technol Lett 55:2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. S. Wang
    • 1
    • 2
    Email author
  • Z. L. Zhang
    • 1
  • M. H. Li
    • 1
  • M. J. Li
    • 2
  • L. K. Gao
    • 2
  • B. Wei
    • 3
  • B. S. Cao
    • 3
  1. 1.Key Laboratory of Micro-Nano Measurement Manipulation and Physics (Beihang University) Ministry of EducationBeijingChina
  2. 2.Beijing Dingchen Superconducting Technology Co., Ltd. (BDST)BeijingChina
  3. 3.Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations