Advertisement

Journal of Sol-Gel Science and Technology

, Volume 86, Issue 1, pp 24–33 | Cite as

Mg2−xMn x SiO4 compound obtained via sol–gel method: structural, morphological and electrochemical properties

  • S. H. Tamin
  • N. A. Dzulkurnain
  • S. B. R. S. Adnan
  • M. H. Jaafar
  • N. S. Mohamed
Original Paper: Characterization methods of sol-gel and hybrid materials
  • 106 Downloads

Abstract

Prospective cathode materials Mg2-xMn x SiO4 (0.0 ≤ x ≤ 0.4) for magnesium-ion secondary battery were synthesized using sol gel method. Crystalline structure, morphology, particle size, electrical and electrochemical properties of the samples were investigated. X-ray diffraction patterns of the materials exhibited no extra peak for x ≤ 0.6 indicated that Mg2-xMn x SiO4 materials were successfully synthesized. Mn doping in magnesium site did not affect the formation of single phase, and this probably due to the low concentration of Mn to induces structural changes. Mn doping contributed to the enhancement of the electrochemical performance of Mg2SiO4. For this work, Mg1.4Mn0.6SiO4 which possesses the largest unit cell volume, smallest charge transfer resistance, and highest conductivity value showed the most promising electrochemical performance compared to the other samples. These results indicated the suitability of the Mg2-xMn x SiO4 to be exploiting further for potential applications as solid electrolytes in electrochemical devices and strengthen the fact that doping could be an effective way to enhanched the structural, electrical and electrochemical performance of materials.

Keywords

Olivine Cathode material Cyclic voltammetry X-ray diffraction Magnesium battery 

Notes

Acknowledgements

The authors gratefully acknowledge support by the University Malaya Research Grant, UMRG (RP013C-13AFR) and Postgraduate Research Grant, PPP (PG224-2015A). A highly gratitude goes to Ministry of Higher Education for scholarship My Brain15 awarded to Siti Hafizha.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Padhi AK, Nanjundaswamy K, Goodenough J (1997) Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  2. 2.
    Kandhasamy S, Nallathamby K, Minakshi M (2012) Role of structural defects in olivine cathodes. Progress Solid State Chem 40(1):1–5CrossRefGoogle Scholar
  3. 3.
    Wu B, Ren Y, Li N (2011) LiFePO4 cathode material. In: Electric vehicles—the benefits and barriers. InTechGoogle Scholar
  4. 4.
    Zhang W-J (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196(6):2962–2970CrossRefGoogle Scholar
  5. 5.
    Padhi AK, Nanjundaswamy K, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  6. 6.
    Tavangarian F, Emadi R (2009) Mechanical activation assisted synthesis of pure nanocrystalline forsterite powder. J Alloy Compd 485(1):648–652CrossRefGoogle Scholar
  7. 7.
    Kharaziha M, Fathi M (2009) Synthesis and characterization of bioactive forsterite nanopowder. Ceram Int 35(6):2449–2454CrossRefGoogle Scholar
  8. 8.
    Saberi A, Negahdari Z, Alinejad B, Golestani-Fard F (2009) Synthesis and characterization of nanocrystalline forsterite through citrate–nitrate route. Ceram Int 35(4):1705–1708CrossRefGoogle Scholar
  9. 9.
    Liu B, Luo T, Mu G, Wang X, Chen D, Shen G (2013) Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7(9):8051–8058CrossRefGoogle Scholar
  10. 10.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279CrossRefGoogle Scholar
  11. 11.
    Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27CrossRefGoogle Scholar
  12. 12.
    Novák P, Scheifele W, Haas O (1995) Magnesium insertion batteries—an alternative to lithium? J Power Sources 54(2):479–482CrossRefGoogle Scholar
  13. 13.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  14. 14.
    Mizrahi O, Amir N, Pollak E, Chusid O, Marks V, Gottlieb H, Larush L, Zinigrad E, Aurbach D (2008) Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries. J Electrochem Soc 155(2):A103–A109CrossRefGoogle Scholar
  15. 15.
    Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73CrossRefGoogle Scholar
  16. 16.
    NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. Chem Commun 46(21):3794–3796CrossRefGoogle Scholar
  17. 17.
    Feng Z, NuLi Y, Wang J, Yang J (2006) Study of key factors influencing electrochemical reversibility of magnesium deposition and dissolution. J Electrochem Soc 153(10):C689–C693CrossRefGoogle Scholar
  18. 18.
    NuLi Y, Yang J, Li Y, Feng Z, Wang J (2008) Molten salt synthesis of MgMnSiO4 for rechargeable magnesium battery cathode. Meet Abstr 4:450–450. The Electrochemical SocietyGoogle Scholar
  19. 19.
    Feng Z, Yang J, NuLi Y, Wang J, Wang X, Wang Z (2008) Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO 4. Electrochem Commun 10(9):1291–1294CrossRefGoogle Scholar
  20. 20.
    NuLi Y, Yang J, Wang J, Li Y (2009) Electrochemical intercalation of Mg2+ in magnesium manganese silicate and its application as high-energy rechargeable magnesium battery cathode. J Phys Chem C 113(28):12594–12597CrossRefGoogle Scholar
  21. 21.
    Zhang S, Huang Y, Kai W, Shi L, Seo HJ (2010) Tunable red luminescence of Mn2+-doped NaCaPO4 phosphors. Electrochem Solid-State Lett 13(2):J11–J14CrossRefGoogle Scholar
  22. 22.
    Wang B, Xu B, Liu T, Liu P, Guo C, Wang S, Wang Q, Xiong Z, Wang D, Zhao X (2014) Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6(2):986–995CrossRefGoogle Scholar
  23. 23.
    Levi E, Gofer Y, Vestfreed Y, Lancry E, Aurbach D (2002) Cu2Mo6S8 chevrel phase, a promising cathode material for new rechargeable Mg batteries: a mechanically induced chemical reaction. Chem Mater 14(6):2767–2773CrossRefGoogle Scholar
  24. 24.
    Adnan SBRS, Mohamed NS (2012) Conductivity and dielectric studies of Li2ZnSiO4 ceramic electrolyte synthesized via citrate sol gel method. Int J Electrochem Sci 7:9844–9858Google Scholar
  25. 25.
    Mustaffa NA, Mohamed NS (2016) Zirconium-substituted LiSn2P3O12 solid electrolytes prepared via sol–gel method. J Sol–Gel Sci Technol 77(3):585–593CrossRefGoogle Scholar
  26. 26.
    Tamin SH, Adnan SBRS, Jaafar MH, Mohamed NS (2017) Effects of sintering temperature on the structure and electrochemical performance of Mg2SiO4 cathode materials. Ionics 1–7Google Scholar
  27. 27.
    Adnan SBRS, Mohamed NS (2014) Characterization of novel Li4Zr0.06Si0.94O4 and LI3.94Cr0.02 Zr0.06Si0.94 O4 ceramic electrolytes for lithium cells. Ceram Int 40(4):6373–6379CrossRefGoogle Scholar
  28. 28.
    Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1− yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes. J Phys Chem C 114(36):15530–15540CrossRefGoogle Scholar
  29. 29.
    Huang Y-J, Gao D-S, Lei G-T, Li Z-H, Su G-Y (2007) Synthesis and characterization of Li(Ni1/3Co1/3Mn1/3)0.96Si0.04O1.96F0.04 as a cathode material for lithium-ion battery. Mater Chem Phys 106(2):354–359CrossRefGoogle Scholar
  30. 30.
    Yang L, Jiao L, Miao Y, Yuan H (2010) Synthesis and characterization of LiFe0. 99Mn0. 01(PO4)2.99/3F0. 01/C as a cathode material for lithium-ion battery. J Solid State Electrochem 14(6):1001–1005CrossRefGoogle Scholar
  31. 31.
    Liu H, Li C, Cao Q, Wu Y, Holze R (2008) Effects of heteroatoms on doped LiFePO4/C composites. J Solid State Electrochem 12(7-8):1017–1020CrossRefGoogle Scholar
  32. 32.
    Saberi A, Alinejad B, Negahdari Z, Kazemi F, Almasi A (2007) A novel method to low temperature synthesis of nanocrystalline forsterite. Mater Res Bull 42(4):666–673CrossRefGoogle Scholar
  33. 33.
    Paques-Ledent MT, Tarte P (1973) Vibrational studies of olivine-type compounds—I. The i.r. and Raman spectra of the isotopic species of Mg2SiO4. Spectrochim Acta 29(6):1007–1016CrossRefGoogle Scholar
  34. 34.
    Mazza D, Lucco-Borlera M, Busca G, Delmastro A (1993) High-quartz solid-solution phases from xerogels with composition 2MgO·2Al2O3·5SiO2 (μ-Cordierite) and Li2O.Al2O3·nSiO2 (n = 2 to 4) (β-Eucryptite): characterization by XRD, FTIR and surface measurements. J Eur Ceram Soc 11(4):299–308.  https://doi.org/10.1016/0955-2219(93)90029-Q CrossRefGoogle Scholar
  35. 35.
    Tsai M (2002) Hydrolysis and condensation of forsterite precursor alkoxides: modification of the molecular gel structure by acetic acid. J Non-Cryst Solids 298(2):116–130CrossRefGoogle Scholar
  36. 36.
    Shu H, Wang X, Wu Q, Hu B, Yang X, Wei Q, Liang Q, Bai Y, Zhou M, Wu C (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155CrossRefGoogle Scholar
  37. 37.
    Zou M, Yoshio M, Gopukumar S, Yamaki JI (2004) Synthesis and electrochemical performance of high voltage cycling LiM0.05Co0.95O2 as cathode material for lithium rechargeable cells. Electrochem Solid-State Lett 7(7):A176–A179.  https://doi.org/10.1149/1.1738423 CrossRefGoogle Scholar
  38. 38.
    Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48(2):145–151.  https://doi.org/10.1016/S0013-4686(02)00593-5 CrossRefGoogle Scholar
  39. 39.
    Yang L, Jiao L, Miao Y, Yuan H (2010) Synthesis and characterization of LiFe0. 99Mn0. 01 (PO4)2.99/3F0. 01/C as a cathode material for lithium-ion battery. J Solid State Electrochem 14(6):1001–1005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.School of Chemical Science and Technology, Faculty of Science & TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Centre for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations