Skip to main content
Log in

Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In recent years RNA aptamers have emerged as potential recognition elements for solid phase assays, including assays that utilize sol–gel based biohybrid materials. However, there is still very little knowledge regarding the behavior of RNA aptamers when entrapped in sol–gel-derived materials. In this work, we evaluated the performance of an adenosine triphosphate (ATP)-binding structure-switching RNA aptamer in a series of sol–gel derived materials and compared the results to those previously reported for an ATP-binding DNA aptamer. It was observed that the nature of the entrapping material is the key parameter affecting the functionality of the entrapped ATP-binding RNA aptamer, which mainly impacts its ability to remain fully hybridized to signaling DNA strands upon entrapment. We observed that those materials with a high organic content provided the best performance for entrapped RNA aptamers at early times after entrapment. However, upon aging, materials derived from sodium silicate provided the best performance. Overall, the results suggest that polar materials that do not produce alcohol are optimal for entrapment of both DNA and RNA aptamers that bind ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Mater Lett 10:1–2

    Article  Google Scholar 

  2. Braun S, Shtelzer S, Rappoport S, Avnir D, Ottolenghi M (1992) J Non-Cryst Solids 147-148:739–743

    Article  Google Scholar 

  3. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614

    Article  Google Scholar 

  4. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013

    Article  Google Scholar 

  5. Brennan JD (1999) Appl Spectrosc 53:106A–121A

    Article  Google Scholar 

  6. Jin W, Brennan JD (2002) Analtica Chinica Acta 461:1–36

    Article  Google Scholar 

  7. Goring GLG, Brennan JD (2002) J Mater Chem 12:3400–3406

    Article  Google Scholar 

  8. Siu X, Cruz-Aguado JA, Chen Y, Zhang Z, Brook MA, Brennan JD (2005) Chem Mater 17:1174–1182

    Article  Google Scholar 

  9. Besanger TR, Brennan JD (2006) J Sol–Gel Sci Tech 40:209–225

    Article  Google Scholar 

  10. Eleftheriou NM, Brennan JD (2009) J Sol–Gel Sci Tech 50:184–193

    Article  Google Scholar 

  11. Jin W, Brennan JD (2002) Anal Chim Acta 461:1–36

    Article  Google Scholar 

  12. Tombelli S, Minunni M, Mascini M (2005) Biosens Bioelectron 20:2424–2434

    Article  Google Scholar 

  13. Banerjee J, Nilsen-Hamilton M (2013) J Mol Med 91:1333–1342

    Article  Google Scholar 

  14. Clark SL, Remcho VT (2002) Electrophoresis 23:1335–1340

    Article  Google Scholar 

  15. de Aguiar Ferreira C, de Barros ALB (2013) J Mol Pharm Org Process Res 1:1000105

    Google Scholar 

  16. Famulok M, Mayer G (2011) Acc Chem Res 44:1349–1359

    Article  Google Scholar 

  17. Iliuk AB, Hu L, Tao WA (2011) Anal Chem 83:4440–4452

    Article  Google Scholar 

  18. Lau PS, Coombes BK, Li Y (2010) Angew Chem Int Ed 49:7938–7942

    Article  Google Scholar 

  19. Sassanfar M, Szostak JW (1993) Nature 364:550–553

    Article  Google Scholar 

  20. Huizenga DE, Szostak JW (1995) Biochemistry 34:656–665

    Article  Google Scholar 

  21. Nutiu R, Li Y (2003) J Am Chem Soc 125:4771–4778

    Article  Google Scholar 

  22. Nutiu R, Li Y (2005) Angew Chem Int Ed 44:1061–1065

    Article  Google Scholar 

  23. Nutiu R, Mei S, Liu Z, Li Y (2004) Pure Appl Chem 76:1547–1561

    Article  Google Scholar 

  24. Schlosser K, Li Y (2009) Chem Biol 16:311–322

    Article  Google Scholar 

  25. Silverman SK (2016) Trends Biochem Sci 41:595–609

    Article  Google Scholar 

  26. Liu M, Chang D, Li Y (2017) Acc Chem Res 50:2273–2283

    Article  Google Scholar 

  27. Haranath D, Rao AV (1999) Micro Mesopor Mat 30:267–273

    Article  Google Scholar 

  28. Hui CY, Li Y, Brennan JD (2014) Chem Mater 26:1896–1904

    Article  Google Scholar 

  29. Carrasquilla C, Lau PS, Li Y, Brennan JD (2012) J Am Chem Soc 134:10998–11005

    Article  Google Scholar 

  30. Tucker BJ, Breaker RR (2005) Curr Opin Struct Biol 15:342–348

    Article  Google Scholar 

  31. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR (2017) RNA 23:995–1011

    Article  Google Scholar 

  32. Carrasquilla C, Kapteyn E, Li Y, Brennan JD (2017) Angew Chem Int Ed 56:10686–10690

    Article  Google Scholar 

  33. Lin CH, Patel DJ (1997) Chem Biol 4:817–832

    Article  Google Scholar 

  34. Shen Y, Mackey G, Rupcich N, Gloster D, Chiuman W, Li Y, Brennan JD (2007) Anal Chem 79:3494–3503

    Article  Google Scholar 

  35. Zheng L, Brennan JD (1998) Analyst 123:1735–1744

    Article  Google Scholar 

  36. Flora KK, Brennan JD (2001) Chem Mater 13:4170–4179

    Article  Google Scholar 

  37. Rachwal PA, Fox KR (2007) Methods 43:291–301

    Article  Google Scholar 

  38. Rupcich N, Nutiu R, Li Y, Brennan JD (2005) Anal Chem 77:4300–4307

    Article  Google Scholar 

  39. Rupcich N, Chiuman W, Razvan N, Mei S, Flora KK, Li Y, Brennan JD (2006) J Am Chem Soc 128:780–790

    Article  Google Scholar 

  40. Gupta R, Chaudhury NK (2007) Biosens Bioelectron 22:2387–2399

    Article  Google Scholar 

  41. Zheng L, Reid WR, Brennan JD (1997) Anal Chem 69:3940–3949

    Article  Google Scholar 

  42. Brinker CJ (1988) J Non-Cryst Solids 100:31–50

    Article  Google Scholar 

  43. Tan B, Rankin SE (2006) J Non-Cryst Solids 352:5453–5462

    Article  Google Scholar 

  44. Brennan JD, Hartman JS, Ilnicki EI, Rakic M (1999) Chem Mater 11:1853–1864

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Pro-Lab Diagnostics Inc. for funding this work. We also thank the Canada Foundation for Innovation and the Ministry of Research and Innovation (Ontario Research Fund) for support of this work. YL holds the Canada Research Chair in Directed Evolution of Nucleic Acids. JDB holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Brennan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights:

  • We show that RNA aptamers perform best when entrapped in polar silica-based materials

  • Entrapped RNA aptamers show better detection limits that RNA aptamers in solution

  • Entrapped RNA aptamers remain stable over at least a month of storage

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, C.Y., Lau, P.S., Li, Y. et al. Investigation of RNA structure-switching aptamers in tunable sol–gel-derived materials. J Sol-Gel Sci Technol 89, 234–243 (2019). https://doi.org/10.1007/s10971-018-4588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4588-z

Keywords

Navigation