Skip to main content

Advertisement

Log in

Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 4, 4′-oxydianiline

  • Review Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polyimide cross-linked silica aerogels with different weight percentages of polyimide were prepared through sol–gel technology and supercritical CO2 fluid drying technology. Tetraethoxysilane (TEOS) was used as a silica source precursor, 3-aminopropyltriethoxysilane (APTES) end-capped polyimide was used as a cross-linking agent, derived from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride (BPDA) and 4, 4′-oxydianiline (ODA). The acid produced during the imidization process catalyzed the hydrolysis reaction without additional catalyst. After condensation reaction catalyzed by ammonium hydroxide solution, the polyimide cross-linked silica gels were obtained and then dried in supercritical CO2. The polyimide cross-linked silica aerogels have low density (0.132~0.187 g/cm3), high specific surface area (623–741 m2/g), low thermal conductivity (0.0306~0.0347 W/m K at room temperature), relatively high compressive strength (1.03~3.82 MPa) and high thermal decomposition temperature (360 °C). This research provided a simple and efficient method that used the polyimide as a strengthening phase to improve the mechanical properties of TEOS-based silica aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342

    Article  Google Scholar 

  2. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284:622–624

    Article  Google Scholar 

  3. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4266

    Article  Google Scholar 

  4. Koebel M, Rigacci A, Achard P (2012) Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 63:315–339

    Article  Google Scholar 

  5. Cuce E, Cuce PM, Wood CJ, Riffat SB (2014) Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev 34:273–299

    Article  Google Scholar 

  6. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer-Verlag, New York, NY

    Book  Google Scholar 

  7. Karout A, Buisson P, Perrard A, Pierre AC (2005) Shaping and mechanical reinforcement of silica aerogel biocatalysts with ceramic fiber felts. J Sol-Gel Sci Technol 36:163–171

    Article  Google Scholar 

  8. Yang J, Li S, Luo Y, Wang F (2011) Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading. Carbon 49:1542–1549

    Article  Google Scholar 

  9. Gao QF, Feng J, Zhang CR, Feng JZ, Wu W, Jiang YG (2009) Mechanical properties of ceramic fiber-reinforced silica aerogel insulation composites. J Chin Ceram Soc 37:1–5

    Google Scholar 

  10. Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  Google Scholar 

  11. Liao YD, Wu HJ, Ding YF (2012) Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J Sol-Gel Sci Technol 63:445–456

    Article  Google Scholar 

  12. Meador MAB, Vivod SL, Mccorkle L, Quade D, Sullivan RM, Ghosn LD, Clark N, Capadona LA (2008) Reinforcing polymer cross-linked aerogels with carbon nanofibers. J Mater Chem 18:1843–1852

    Article  Google Scholar 

  13. Zhang G, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Leventis CS, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, Mccorkel L, Palczer A, Johnston CJ, Meador MA, Leventis N (2004) Isocyanate-cross-linked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids 350:152–164

    Article  Google Scholar 

  14. Capadona LA, Meador MAB, Alunni A, Fabrizio E, Vassilaras P, Leventis N (2006) Flexible, low-density polymer cross-linked silica aerogels. Polymer 47:5754–5761

    Article  Google Scholar 

  15. Sabri F, Marchetta J, Smith KM (2013) Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space. Acta Astronaut 91:173–179

    Article  Google Scholar 

  16. Yang H, Kong X, Zhang Y, Wu C, Cao E (2011) Mechanical properties of polymer-modified silica aerogels dried under ambient pressure. J Non-Cryst Solids 357:3447–3453

    Article  Google Scholar 

  17. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17:1085–1098

    Article  Google Scholar 

  18. Meador MAB, Scherzer CM, Vivod SL, Quade D, Nguyen BN (2010) Epoxy reinforced aerogels made using a streamlined process. ACS Appl Mater Interfaces 2:2162–2168

    Article  Google Scholar 

  19. Ge D, Yang L, Li Y, Zhao JP (2009) Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J Non-Cryst Solids 355:2610–2615

    Article  Google Scholar 

  20. Ahmad Z, Al-Sagheer F (2015) Novel epoxy-silica nano-composites using epoxy-modified silica hyper-branched structure. Progress Org Coat 80:65–70

    Article  Google Scholar 

  21. Shao Z, Wu G, Cheng X, Zhao Y (2012) Rapid synthesis of amine cross-linked epoxy and methyl co-modified silica aerogels by ambient pressure drying. J Non-Cryst Solids 358:2612–2615

    Article  Google Scholar 

  22. Randall JP, Meador MAB, Jana SC (2013) Polymer reinforced silica aerogels: effects of dimethyldiethoxysilane and bis (trimethoxysilylpropyl) amine as silane precursors. J Mater Chem A 1:6642–6652

    Article  Google Scholar 

  23. Mirshafiei-Langari SA, Haddadi-Asl V, Roghani-Mamaqani H, Sobani M, Khezri K (2013) Synthesis of hybrid free and nanoporous silica aerogel-anchored polystyrene chains via in situ atom transfer radical polymerization. Polym Compos 34:1648–1654

    Article  Google Scholar 

  24. Mirshafiei-Langari SA, Roghani-Mamaqani H, Sobani M, Sobani M, Khezri K (2013) In situ atom transfer radical polymerization of styrene in the presence of nanoporous silica aerogel: kinetic study and investigation of thermal properties. J Polym Res 20:163

    Article  Google Scholar 

  25. Maleki H, Durães L, Portugal A (2015) Synthesis of mechanically reinforced silica aerogels via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. J Mater Chem A 3:1594–1600

    Article  Google Scholar 

  26. Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N (2008) Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem Mater 20:5035–5046

    Article  Google Scholar 

  27. Maleki H, Durães L, Portugal A (2014) Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater 197:116–129

    Article  Google Scholar 

  28. White LS, Bertino MF, Saeed S, Saoud K (2015) Influence of silica derivatizer and monomer functionality and concentration on the mechanical properties of rapid synthesis cross-linked aerogels. Microporous Mesoporous Mater 217:244–252

    Article  Google Scholar 

  29. White LS, Bertino MF, Kitchen G, Young J, Newton C, Al-soubaihi R, Saeed S, Saoud K (2015) Shortened aerogel fabrication times using an ethanol–water azeotrope as a gelation and drying solvent. J Mater Chem A 3(2):762–772

    Article  Google Scholar 

  30. Matsuura T, Yamada N, Nishi S, Hasuda Y (1993) Polyimides derived from 2,2′-bis (trifluoromethyl)-4, 4′-diaminobiphenyl. III: properties control for polymer blends and copolymerization of fluorinated polyimides. Macromolecules 26:419–423

    Article  Google Scholar 

  31. Guo J, Nguyen BN, Li L, Meador MAB, Scheiman DA, Cakmak M (2013) Clay reinforced polyimide/silica hybrid aerogel. J Mater Chem A 1(24):7211–7221

    Article  Google Scholar 

  32. Yan P, Zhou B, Du A (2014) Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv 4:58252–58259

    Article  Google Scholar 

  33. Rao AP, Pajonk GM, Rao AV (2005) Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels. J Mater Sci 40:3481–3489

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51702364) and Independent Project of Naval University of Engineering, China (Grant No. 425517K152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Fei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Yang, Z., Chen, G. et al. Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride and 4, 4′-oxydianiline. J Sol-Gel Sci Technol 85, 506–513 (2018). https://doi.org/10.1007/s10971-017-4566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4566-x

Keywords

Navigation