Skip to main content
Log in

Study of thermal and flame behavior of phosphorus-based silica for epoxy composites

  • Original Paper: Educational aspects of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Phosphorous-containing silica was prepared by acid hydrolysis of sodium silicate via a cost-effective sol–gel method. Phosphorus was incorporated during synthesis of silica by adding three different phosphorus compounds namely di-sodium hydrogen orthophosphate, orthophosphoric acid, and hypophosphorous acid. The silica powder was analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and dynamic light scattering (DLS). FTIR spectrum shows the presence of phosphorous in the samples. SEM picture of phosphorous containing silica is globular whereas pure silica is fluffier. The EDX results indicate the phosphorous incorporation up to 5 wt% atomic weight. TGA analysis shows approximately 15 wt% loss up to 150 °C for oven dried samples and the residue at 700 °C is higher for phosphorous containing samples. DLS results show the particle size for all the samples near 1000 nm. Limiting oxygen index (LOI) and smoke density of the epoxy composite samples was evaluated. The LOI value of the phosphorous containing silica composite material has been slightly improved. But the burning behavior of the samples indicates the sufficient formation of protective char layer and the char analysis of the composite samples shows more bubble structure. This type of foam structure of the char protects the surface from fire propagation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen X, Gu A, Liang G, Yuan L, Zhuo D, Hu JT (2012) Novel low phosphorus-content bismaleimide resin system with outstanding flame retardancy and low dielectric loss. Polym Degrad Stab 97(5):698–706

    Article  Google Scholar 

  2. Klinkowski C, Wagner S, Ciesielski M, Doring M (2014) Bridged phosphorylated diamines: synthesis, thermal stability and flame retarding properties in epoxy resins. Polym Degrad Stab 106:122–128

    Article  Google Scholar 

  3. Wang T, Wan PY, Qin PY, Yu M (2008) Synthesis and characterization of dicyclopentadiene–cresol epoxy resin. Poly Bull 59(6):787–793

    Article  Google Scholar 

  4. Gao LP, Wang DY, Wang YZ, Wang JS, Yang B (2008) A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym Degrad Stab 93(7):1308–1315

    Article  Google Scholar 

  5. El Gouri M, El Bachiri A, Hegazi SE, Rafik M, El Harfi A (2009) Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym Degrad Stab 94(11):2101–2106

    Article  Google Scholar 

  6. Gu L, Chen G, Yao Y (2014) Two novel phosphorus–nitrogen-containing halogen-free flame retardants of high performance for epoxy resin. Polym Degrad Stab 108:68–75

    Article  Google Scholar 

  7. Sen AK, Kumar S (2010) Coir-fiber-based fire retardant nano filler for epoxy composites. J Therm Anal Calorim 101(1):265–271

    Article  Google Scholar 

  8. Liang S, Neisius NM, Gaan S (2013) Recent developments in flame retardant polymeric coatings. Prog Org Coat 76(11):1642–1665

    Article  Google Scholar 

  9. Balabanovich AI, Hornung A, Merz D, Seifert H (2004) The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym Degrad Stab 85(1):713–723

    Article  Google Scholar 

  10. Covaci A, Voorspoels S, Abdallah MA, Geens T, Harrad S, Law RJ (2009) Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A 1216(3):346–363

    Article  Google Scholar 

  11. Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S (2014) Bridged DOPO derivatives as flame retardants for PA6. Polym Degrad Stab 107:158–165

    Article  Google Scholar 

  12. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27(8):1661–1712

    Article  Google Scholar 

  13. Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Mater J 3(10):4710–4745

    Article  Google Scholar 

  14. Jeng RJ, Shau SM, Lin JJ, Su WC, Chiu YS (2002) Flame retardant epoxy polymers based on all phosphorus-containing components. Eur Polym J 38(4):683–693

    Article  Google Scholar 

  15. Dong Q, Liu M, Ding Y, Wang F, Gao C, Liu P, Wen B, Zhang S, Yang M (2013) Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites. Polym Adv Technol 24(8):732–739

    Article  Google Scholar 

  16. Chen Y, Zhan J, Zhang P, Nie S, Lu H, Song L, Hu Y (2010) Preparation of intumescent flame retardant poly (butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res 49(17):8200–8208

    Article  Google Scholar 

  17. Alongi J, Colleoni C, Rosace G, Malucelli G (2012) Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J Therm Anal Calorim 110(3):1207–1216

    Article  Google Scholar 

  18. Shewale PM, Rao AV, Rao AP, Bhagat SD (2009) Synthesis of transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying. J Sol–Gel Sci Technol 49(3):285–292

    Article  Google Scholar 

  19. Lin YS, Lin HP, Mou CY (2004) A simple synthesis of well-ordered super-microporous aluminosilicate. Microporous Mesoporous Mater 76(1):203–208

    Article  Google Scholar 

  20. Meenakshi KS, Sudhan EP, Kumar SA (2012) Development and characterization of new phosphorus based flame retardant tetraglycidyl epoxy nanocomposites for aerospace application. Bull Mater Sci 35(2):129–136

    Article  Google Scholar 

  21. Giraldo L, Bastidas-Barranco M, Moreno-Pirajan JC (2016) Adsorption calorimetry: energetic characterisation of the surface of mesoporous silicas and their adsorption capacity of non-linear chain alcohols. Colloids Surf A 496:100–113

    Article  Google Scholar 

  22. Dong Q, Ding Y, Wen B, Wang F, Dong H, Zhang S, Wang T, Yang M (2014) Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles. Colloid Polym Sci 290(14):1371–1380

    Article  Google Scholar 

  23. Music S, Filipovic-Vincekovic N, Sekovanic L (2011) Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng 28(1):89–94

    Article  Google Scholar 

  24. Bryans TR, Brawner VL, Quitevis EL (2000) Microstructure and porosity of silica xerogel monoliths prepared by the fast sol–gel method. J Sol–Gel Sci Technol 17(3):211–217

    Article  Google Scholar 

  25. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Biores Technol 73(3):257–262

    Article  Google Scholar 

  26. Olhero SM, Ferreira JM (2004) Influence of particle size distribution on rheology and particle packing of silica-based suspensions. Powder Technol 139(1):69–75

    Article  Google Scholar 

  27. Jesionowski T, Krysztafkiewicz A (2002) Preparation of the hydrophilic/hydrophobic silica particles. Colloids Surf A 207(1):49–58

    Article  Google Scholar 

  28. Massiot P, Centeno MA, Gouriou M, Dominguez MI, Odriozola JA (2003) Sol–gel obtained silicophosphates as materials to retain caesium at high temperatures. J Mater Chem A 13(1):67–74

    Article  Google Scholar 

  29. Massiot P, Centeno MA, Carrizosa I, Odriozola JA (2001) Thermal evolution of sol–gel-obtained phosphosilicate solids (SiPO). Non-Cryst Solids 292(1):158–166

    Article  Google Scholar 

  30. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polym 51(11):2435–2445

    Article  Google Scholar 

  31. Liu YL, Wei WL, Hsu KY, Ho WH (2004) Thermal stability of epoxy-silica hybrid materials by thermogravimetric analysis. Thermochim Acta 412(1):139–147

    Article  Google Scholar 

  32. Liu YL, Hsu CY, Wei WL, Jeng RJ (2003) Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44(18):5159–5167

    Article  Google Scholar 

  33. Ho TH, Hwang HJ, Shieh JY, Chung MC (2009) Thermal, physical and flame-retardant properties of phosphorus-containing epoxy cured with cyanate ester. React Funct Polym 69(3):176–182

    Article  Google Scholar 

  34. Cavdar AD (2014) Effect of various wood preservatives on limiting oxygen index levels of fire wood. Measurement 50:279–284

    Article  Google Scholar 

  35. Suzanne M, Delichatsios MA, Zhang JP (2014) Flame extinction properties of solids obtained from limiting oxygen index tests. Combust Flame 161(1):288–294

    Article  Google Scholar 

  36. Qian X, Song L, Hu Y, Jiang S (2016) Novel DOPO-based epoxy curing agents. J Therm Anal Calorim 126(3):1339–1348

    Article  Google Scholar 

  37. Qian X, Song L, Hu Y, Yuen RK (2013) Thermal degradation and flammability of novel organic/inorganic epoxy hybrids containing organophosphorus-modified oligosiloxane. Thermochim Acta 552:87–97

    Article  Google Scholar 

  38. Alongi J, Collconi C, Rosace G, Malucelli G (2012) Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films. J Therm Anal Calorim 110:1207–1216

    Article  Google Scholar 

  39. Chiang C, Ma C (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorous nanocomposites by sol–gel method. Eur Polym J 38:2219–2224

    Article  Google Scholar 

  40. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) Synthesis and characterization of a DOPO-substitued organophosphorus oligomer and its application in flame retardant epoxy resins. Prog Org Coat 71(1):72–82

    Article  Google Scholar 

  41. Sponton M, Ronda JC, Galia M, CAdiz V (2009) Cone calorimetry studies of benzoxazine–epoxy systems flame retarded by chemically bonded phosphorus or silicon. Polym Degrad Stab 94(1):102–106

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledge the financial support from NRB DRDO sponsored project (NRB/4003/PG/340). The authors are also acknowledge the characterization facility (Central Instrumentation Facility) at Birla Institute of Technology Mesra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree, V., Sen, A.K. Study of thermal and flame behavior of phosphorus-based silica for epoxy composites. J Sol-Gel Sci Technol 85, 269–279 (2018). https://doi.org/10.1007/s10971-017-4546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4546-1

Keywords

Navigation