Skip to main content
Log in

Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Undoped and boron-doped ZnO nanorods (NRs) were grown on ITO glass substrates by using hydrothermal techniques. The as grown nanorods were investigated by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible spectroscopy, and photoelectrochemical study. XRD spectra reveal the confirmations regarding the hexagonal wurtzite structure along with preferential orientation (002). The observation of (002) peak shows a red shift. The average size distribution of NRs in doped and undoped sample ranges from 169 to 191 nm. The absorption spectra clearly revealed the band gap tunability feature of the samples with a change in doping percentage. Photoluminescence spectra clearly indicate the presence of oxygen defects. Photocurrent density as high as ∼0.622 and 2.6 mA/cm2 were obtained for undoped and 6% B-doped ZnO NRs arrays respectively, at +0.44 V vs. Ag/AgCl electrode under visible light AM 1.5 G (100 mW/cm2) in 0.1 M electrolyte solutions of NaOH. More enhancement in photoconversion efficiency (PCE) from 0.491 to 2.054% was observed for undoped ZnO NRs and optimum 6% B-doped ZnO in 0.1 M NaOH electrolyte solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) TiO2 photoelectrochemistry and photocatalysis. Nature 213:8656

    Google Scholar 

  2. Fan J, Güell F, Fábrega C, Shavel A, Carrete A, Andreu T, Ramón Morante J, Cabot A (2011) Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile. Appl Phys Lett 99:262102

    Article  Google Scholar 

  3. Zhang Z, Yuan Y, Liang L, Cheng Y, Shi G, Jin L (2008) Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye degradation. J Hazard Mater 158:517–522

    Article  Google Scholar 

  4. Lin J, Hu P, Zhang Y, Fan M, He Z, Ngaw CK, Loo JSC, Liao D, Tan TTY (2013) Understanding the photoelectrochemical properties of a reduced graphene oxide–WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting. RSC Adv 3:9330–9336

    Article  Google Scholar 

  5. Yengantiwar A, Palanivel S, Archana PS, Ma Y, Pan S, Gupta A (2017) Direct liquid injection chemical vapor deposition of molybdenum-doped bismuth vanadate photoelectrodes for efficient solar water splitting. J Phys Chem C 121:5914–5924

    Article  Google Scholar 

  6. Chakraborty M, Roy D, Biswas A, Thangavel R, Udayabhanu G (2016) Structural, optical and photo-electrochemical properties of hydrothermally grown ZnO nanorods arrays covered with α-Fe2O3 nanoparticles. RSC Adv 6:75063–75072

    Article  Google Scholar 

  7. Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566

    Article  Google Scholar 

  8. Norton DP (2004) Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater Sci Eng R Rep 43:139–247

    Article  Google Scholar 

  9. Nadarajah A, Word RC, Meiss J, Konenkamp R (2008) Flexible inorganic nanowire light-emitting diode. Nano Lett 8:534–537

    Article  Google Scholar 

  10. Lupan O, Chow L, Chai G (2009) A single ZnO tetrapod-based sensor. Sens Actuat B Chem 141:511–517

    Article  Google Scholar 

  11. Kim J, Park W, Lee C (2006) ZnO nanorod biosensor for highly sensitive detection of specific protein binding. J Korean Phys Soc 49:1635–1639

    Google Scholar 

  12. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ, Wang HT, Kang BS, Ren F, Jun J, Lin J (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Appl Phys Lett 87:1–3

    Google Scholar 

  13. Hong W-K, Sohn JI, Hwang D-K, Kwon S-S, Jo G, Song S, Kim S-M, Ko H-J, Park S-J, Welland ME, Lee T (2008) Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett 8:950–956

    Article  Google Scholar 

  14. Tributsch H, Gerischer H (1969) The use of semiconductor electrodes in the study of photochemical reactions. Berichte der Bunsengesellschaft für Phys Chemie 73:850–854

    Google Scholar 

  15. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  16. Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M (2014) Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8:2261–2268

    Article  Google Scholar 

  17. Chou TP, Zhang Q, Cao G (2007) Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J Phys Chem C 111:18804–18811

    Article  Google Scholar 

  18. Wang Y, Zheng YZ, Lu S, Tao X, Che Y, Chen JF (2015) Visible-light-responsive TiO2 coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl Mater Interfaces 7:6093–6101

    Article  Google Scholar 

  19. Archana PS, Shan Z, Pan S, Gupta A (2016) Photocatalytic water oxidation at bismuth vanadate thin film electrodes grown by direct liquid injection chemical vapor deposition method. Int J Hydrog Energy 42:8475–8485

  20. Yu Q, Li J, Li H, Wang Q, Cheng S, Li L (2012) Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film. Chem Phys Lett 539–540:74–78

    Article  Google Scholar 

  21. Kim S, Kim MS, Nam G, Leem J-Y (2012) Structural and blue emission properties of Al-doped ZnO nanorod array thin films grown by hydrothermal method. Electron Mater Lett 8:445–450

    Article  Google Scholar 

  22. Zhu L, Li J, Ye Z, He H, Chen X, Zhao B (2008) Photoluminescence of Ga-doped ZnO nanorods prepared by chemical vapor deposition. Opt Mater 31:237–240

    Article  Google Scholar 

  23. Fang TH, Kang SH (2010) Optical and physical characteristics of In-doped ZnO nanorods. Curr Appl Phys 10:1076–1086

    Article  Google Scholar 

  24. Tahar RBH, Tahar NBH (2005) Boron-doped zinc oxide thin films prepared by sol–gel technique. J Mater Sci 40:5285–5289

    Article  Google Scholar 

  25. Liu X, Wu X, Cao H, Chang RPH (2004) Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys 95:3141–3147

    Article  Google Scholar 

  26. Park WI, Kim DH, Jung SW, Yi GC (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl Phys Lett 80:4232–4234

    Article  Google Scholar 

  27. Liang L, Huang Z, Cai L, Chen W, Wang B, Chen K, Bai H, Tian Q, Fan B (2014) Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode inter layer for perovskite planar-heterojunction solar cells. ACS Appl Mater Interfaces 6:20585–20589

    Article  Google Scholar 

  28. Djurišić AB, Leung YH, Tam KH, Ding L, Ge WK, Chen HY and Gwo S (2006) Green, yellow, and orange defect emission from ZnO nanostructures: influence of excitation wavelength. Appl Phys Lett 88:103107

  29. Kim H, Moon J, Lee H (2009) Growth of ZnO nanorods on various substrates by electrodeposition. Electron Mater Lett 5:135–138

    Google Scholar 

  30. Maldonado A, Asomoza R, Cañetas-Ortega J, Zironi E, Hernández R, Patiño R, Solorza-Feria O (1999) Effect of the pH on the physical properties of ZnO:In thin films deposited by spray pyrolysis. Sol Energy Mater Sol Cells 57:331–344

    Article  Google Scholar 

  31. Yang H, Song Y, Li L, Ma J, Chen D, Mai S, Zhao H (2008) Large-scale growth of highly oriented ZnO nanorod arrays in the Zn-NH3·H2O hydrothermal system. Cryst Growth Des 8:1039–1043

    Article  Google Scholar 

  32. Tsin F, Thomere A, Bris ALe, Collin S, Lincot D, Rousset J (2016) Influence of a boron precursor on the growth and optoelectronic properties of electrodeposited zinc oxide thin film. ACS Appl Mater Interfaces 8:12298–12306

    Article  Google Scholar 

  33. Rahman MYA, Roza L, Umar AA, Salleh MM (2016) Effect of dimethyl borate composition on the performance of boron doped ZnO dye-sensitized solar cell (DSSC). J Mater Sci Mater Electron 27:2228–2234

    Article  Google Scholar 

  34. Wang W, Ai T, Yu Q (2017) Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET–ITO flexible substrates by hydrothermal method. Sci Rep 7:1–11

    Article  Google Scholar 

  35. Thangavel R, Chang Y-C (2012) Investigations on structural, optical and electrical properties of p-type ZnO nanorods using hydrothermal method. Thin Solid Films 520:2589–2593

    Article  Google Scholar 

  36. Bu IYY, Yeh Y-M (2012) Effects of sulfidation on the optoelectronic properties of hydrothermally synthesized ZnO nanowires. Ceram Int 38:3869–3873

    Article  Google Scholar 

  37. Chen HM, Chen CK, Liu R-S, Wu C-C, Chang W-S, Chen K-H, Chan T-S, Lee J-F, Tsai DP (2011) A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode. Adv Energy Mater 1:742–747

    Article  Google Scholar 

  38. Guo P, Jiang J, Shen S, Guo L (2013) ZnS/ZnO heterojunction as photoelectrode: type II band alignment towards enhanced photoelectrochemical performance. Int J Hydrog Energy 38:13097–13103

    Article  Google Scholar 

  39. Tian ZR, Voigt J, Liu J, McKenzie B, McDermott MJ, Rodriguez M, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826

    Article  Google Scholar 

  40. Das R, Kumar A, Kumar Y et al. (2015) Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Adv 5:60365–60372

    Article  Google Scholar 

  41. Aslan F, Tumbul A, Go A, Budakog R, Mutlu IH (2016) Growth of ZnO nanorod arrays by one-step sol–gel process. J Sol–Gel Sci Technol 80:389–395

    Article  Google Scholar 

  42. Hosono E, Fujihara S, Kimura T (2004) Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes. Electrochim Acta 49:2287–2293

    Article  Google Scholar 

  43. Kim H, Lee J, Yantara N, Boix PP, Kulkarni S, Mhaisalkar S, Grätzel M, Park N (2013) high efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3 PbI3 perovskite sensitizer. Nano Lett 13:2412–2417

    Article  Google Scholar 

  44. Chakraborty M, Thangavel R, Biswas A, Udayabhanu G (2016) Facile synthesis, and the optical and electrical properties of nanocrystalline ZnFe2O4 thin films. CrystEngComm 18:3095–3103

    Article  Google Scholar 

  45. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  Google Scholar 

  46. Lee G-J, Anandan S, Masten SJ, Wu JJ (2016) Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renew Energy 89:18–26

    Article  Google Scholar 

  47. Banu Bahşi Z, Oral AY (2007) Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt Mater 29:672–678

    Article  Google Scholar 

  48. Othman AA, Ali MA, Ibrahim EMM, Osman MA (2016) Influence of Cu doping on structural, morphological, photoluminescence, and electrical properties of ZnO nanostructures synthesized by ice-bath assisted sonochemical method. J Alloys Compd 683:399–411

    Article  Google Scholar 

  49. Das D, Mondal P (2014) Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv 4:35735–35743

    Article  Google Scholar 

  50. Xia CH, Hu CG, Hu CH, Ping Z, Wang F (2011) Room-temperature ferromagnetic properties of Cu-doped ZnO rod arrays. Bull Mater Sci 34:1083–1087

    Article  Google Scholar 

  51. Palni PP, Kumari S, Baruah NG, Singh DKGPK (2007) Effect of annealing on high quality zinc oxide nanowires synthesized by catalytic vapor-deposition. Nano Trends 3:1–6

    Google Scholar 

  52. Thapa D, Huso J, Morrison JL, Corolewski CD, McCluskey MD, Bergman L (2016) Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films. Opt Mater 58:382–389

    Article  Google Scholar 

  53. Wang J, Gao L (2004) Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Commun 132:269–271

    Article  Google Scholar 

  54. Shi S, Xu J, Zhang X, Li L (2011) Effect of annealing on the structural and luminescent properties of ZnO nanorod arrays grown at low temperature. J Appl Phys 109:103508

  55. Lin Y, Yuan G, Sheehan S, Zhou S, Wang D (2011) Hematite-based solar water splitting: challenges and opportunities. Energy Environ Sci 4:4862–4869

    Article  Google Scholar 

  56. Sivula K, Le Formal F, Gratzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449

    Article  Google Scholar 

  57. Kim S, Park H, Nam G, Yoon H, Kim B, Ji I, Kim Y, Kim I, Park Y, Kang D, Leem JY (2014) Hydrothermally grown boron-doped ZnO nanorods for various applications: structural, optical, and electrical properties. Electron Mater Lett 10:81–87

    Article  Google Scholar 

  58. Yun S, Lee J, Chung J, Lim S (2010) Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping. J Phys Chem Solids 71:1724–1731

    Article  Google Scholar 

  59. Bhattacharjee S, Sarkar PK, Roy A (2016) Polyvinyl-alcohol based devices with highly conductive, optically active boron-doped ZnO nanoparticles for efficient resistive-switching at ultralow operating voltage. Superlattices Microstruct 100:1057–1063

    Article  Google Scholar 

  60. Chakraborty M, Ghosh A, Thangavel R, Asokan K (2016) Conduction mechanism in mesoporous hematite thin films using low temperature electrical measurements and theoretical electronic band structure calculations. J Alloys Compd 664:682–689

    Article  Google Scholar 

  61. Hodes G (1992) Nanocrystalline photoelectrochemical cells. J Electrochem Soc 139:3136

    Article  Google Scholar 

  62. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  Google Scholar 

  63. Natu G, Wu Y (2010) Photoelectrochemical study of the ilmenite polymorph of CdSnO3 and its photoanodic application in dye-sensitized solar cells. J Phys Chem C 114:6802–6807

    Article  Google Scholar 

  64. Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48:1914–1920

    Article  Google Scholar 

  65. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST) for the project with grant number SR/FTP/PS-184/2012, SERB vide Dy. No. SERB/F/5439/2013-14 dated 25.11.2013 and Faculty Research Scheme-FRS (54)/2103-2014/APH. The authors would like to thank Indian Institute of Technology (Indian School of Mines), Dhanbad, India for providing research fellowship and Central Research Facility (CRF) respectively. One of the authors M.C. would like to acknowledge Indo-US Science and Technology Forum (IUSSTF) for providing international Bhaskara Advanced Solar Energy (BASE-2016) fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thangavel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Chakraborty, M., Thangavel, R. et al. Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications. J Sol-Gel Sci Technol 85, 1–11 (2018). https://doi.org/10.1007/s10971-017-4536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4536-3

Keywords

Navigation